THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 5

The Cauchy Criterion

Definition. A sequence $X=\left(x_{n}\right)$ of real numbers is said to be a Cauchy sequence if for any $\varepsilon>0$ there exists a natural number K such that

$$
\left|x_{n}-x_{m}\right|<\varepsilon \quad \text { whenever } m, n \geq K \text {. }
$$

Remarks. Not only difference of consecutive terms are considered!
Cauchy Convergence Criterion. A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Example 1. Let $\left(x_{n}\right)$ be a sequence defined by

$$
x_{1}=1 \quad \text { and } \quad x_{n+1}=\sqrt{x_{n}^{2}+\frac{1}{2^{n}}} \quad \text { for } n \in \mathbb{N}
$$

Determine whether $\left(x_{n}\right)$ is convergent or divergent.
Definition. A sequence $\left(x_{n}\right)$ of real numbers is said to be contractive if there exists a constant $C, 0<C<1$, such that

$$
\left|x_{n+2}-x_{n+1}\right| \leq C\left|x_{n+1}-x_{n}\right| \quad \text { for all } n \in \mathbb{N} .
$$

The number C is called the constant of the contractive sequence.
Remarks. Do not confuse (\#) with the following condition:

$$
\left|x_{n+2}-x_{n+1}\right|<\left|x_{n+1}-x_{n}\right| \quad \text { for all } n \in \mathbb{N} .
$$

For example, (\sqrt{n}) satisfies (\#\#) but it is not contractive.
Theorem 1. Every contractive sequence is a Cauchy sequence, and therefore is convergent.

Corollary 2. If $\left(x_{n}\right)$ is a contractive sequence with constant $C, 0<C<1$, and if $x^{*}:=\lim \left(x_{n}\right)$, then
(i) $\left|x^{*}-x_{n}\right| \leq \frac{C^{n-1}}{1-C}\left|x_{2}-x_{1}\right|$,
(ii) $\left|x^{*}-x_{n}\right| \leq \frac{C}{1-C}\left|x_{n}-x_{n-1}\right|$.

Example 2. (Sequence of Fibonacci Fractions) Consider the sequence of Fibonacci fractions $x_{n}:=f_{n} / f_{n+1}$, where $\left(f_{n}\right)$ is the Fibonacci sequence defined by $f_{1}=f_{2}=1$ and $f_{n+2}:=f_{n+1}+f_{n}, n \in \mathbb{N}$. Show that the sequence $\left(x_{n}\right)$ converges to $1 / \varphi$, where $\varphi:=(1+\sqrt{5}) / 2$ is the Golden Ratio.

Example 3. The cubic equation $x^{3}-7 x+2=0$ has a solution between 0 and 1 . Approximate this solution by means of an iteration procedure.

