THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 4

Definition. Let $A \subseteq \mathbb{R}$.

- (i) A point x is called a limit point of A if for any $\varepsilon > 0$, there is $a \in A$ such that $0 < |x a| < \varepsilon$.
- (ii) Write D(A) for the set of all limits points of A.
- (iii) A is said to be closed if $D(A) \subseteq A$.

Proposition 4.7. Let $A \subseteq \mathbb{R}$. Then the following statements are equivalent.

- (i) A is closed.
- (ii) If (x_n) is a convergent sequence in A, then $\lim x_n \in A$.

Example 1. Show that

- (a) if $A, B \subseteq \mathbb{R}$ are closed, then $A \cup B$ is closed;
- (b) if $\{A_{\alpha}\}_{\alpha \in \Lambda}$ is a collection of closed subsets of \mathbb{R} , then $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is closed.

Definition. For $A \subseteq \mathbb{R}$, put

$$\overline{A} = A \cup D(A).$$

The set \overline{A} is called the closure of A.

Proposition 3.10. Let $A \subset \mathbb{R}$. Then we have the following assertions.

- 1. \overline{A} is closed.
- 2. A is closed if and only if $\overline{A} = A$.
- 3. $z \in \overline{A}$ if and only if for any $\delta > 0$, there is $a \in A$ such that $|z a| < \delta$ if and only if there is a convergent sequence (x_n) in A so that $z = \lim x_n$.
- 4. \overline{A} is the smallest closed set containing A.

Example 2. Let $A, B \subseteq \mathbb{R}$. Show that

- (a) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (b) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$ but $\overline{A \cap B} \not\supseteq \overline{A} \cap \overline{B}$ in general.

What can you say about infinite union?

Definition. A subset A of \mathbb{R} is said to be compact if for any sequence (x_n) in A, there is a convergent subsequence (x_{n_k}) of (x_n) such that $\lim x_{n_k} \in A$.

Theorem 4.12. Let $A \subseteq \mathbb{R}$. Then A is compact if and only if A is a closed and bounded subset.

Example 3 (Cantor's Intersection Theorem). Let $\{C_k\}_{k=1}^{\infty}$ be a sequence of non-empty, compact subsets of \mathbb{R} satisfying

$$C_1 \supseteq C_2 \supseteq \cdots \supseteq C_k \supseteq C_{k+1} \supseteq \cdots$$

Show that $\bigcap_{k=1}^{\infty} C_k \neq \emptyset$.

Definition. A set $E \subset \mathbb{R}$ is said to be perfect if E is closed and every point of E is a limit point of E.

Example 4. Let P be a non-empty perfect set. Show that P is uncountable.