THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 3

Subsequences

Definition. Let (x_n) be a sequence of real numbers and let $n_1 < n_2 < \cdots < n_k < \cdots$ be a **strictly increasing** sequence of natural numbers. Then the sequence (x_{n_k}) is called a **subsequence** of (x_n) .

Theorem 1. Let (x_n) be a sequence of real numbers. Then the following are equivalent:

- (i) (x_n) does not converge to $x \in \mathbb{R}$.
- (ii) There exists $\varepsilon_0 > 0$ such that for any $k \in \mathbb{N}$, there exists $n_k \in \mathbb{N}$ such that $n_k \ge k$ and $|x_{n_k} - x| \ge \varepsilon_0$.
- (iii) There exists $\varepsilon_0 > 0$ and a subsequence (x_{n_k}) of (x_n) such that $|x_{n_k} x| \ge \varepsilon_0$ for all $k \in \mathbb{N}$.

Example 1. Let $\ell \in \mathbb{R}$. Show that a sequence (x_n) converges to ℓ if and only if every subsequence of (x_n) has a further subsequence that converges to ℓ

Example 2. Show that if (x_n) is unbounded, then it has a subsequence (x_{n_k}) such that $\lim(1/x_{n_k}) = 0$.

Bolzano-Weierstrass Theorem

The Bolzano-Weierstrass Theorem. A bounded sequence of real numbers has a convergent subsequence

Example 3. Prove that a bounded divergent sequence has two subsequences converging to different limits.

Limit Superior and Limit Inferior

Let (x_n) be a bounded sequence of real numbers. For each $n \in \mathbb{N}$, define

$$a_n = \inf_{k \ge n} x_k = \inf\{x_k : k \ge n\} \quad \text{and} \quad b_n = \sup_{k \ge n} x_k = \sup\{x_k : k \ge n\}.$$

Then (a_n) and (b_n) are both monotone $((a_n)$ increasing and (b_n) decreasing) and bounded, hence convergent.

Definition. The limit inferior and limit superior of (x_n) are defined, respectively, by

$$\underline{\lim} x_n \coloneqq \lim a_n = \sup_{n \ge 1} \left(\inf_{k \ge n} x_k \right),$$
$$\overline{\lim} x_n \coloneqq \lim b_n = \inf_{n \ge 1} \left(\sup_{k \ge n} x_k \right).$$

Example 4. Alternate the terms of the sequences (1 + 1/n) and (-1/n) to obtain the sequence (x_n) given by

$$(2, -1, 3/2, -1/2, 4/3, -1/3, 5/4, -1/4, \dots).$$

Determine the values of $\overline{\lim}(x_n)$ and $\underline{\lim}(x_n)$.

Proposition 2. Let (x_n) be a bounded sequence of real numbers. Then we have

- (i) $\underline{\lim} x_n \le \overline{\lim} x_n;$
- (ii) (x_n) converges to ℓ if and only if $\overline{\lim} x_n = \underline{\lim} x_n$. In this case, we have $\lim x_n = \underline{\lim} x_n = \overline{\lim} x_n$.

Proposition 3. Let (x_n) and (y_n) be bounded sequences of real numbers. Then we have

- (i) $\overline{\lim}(-x_n) = -\underline{\lim} x_n;$
- (*ii*) $\overline{\lim}(ax_n) = a(\overline{\lim} x_n)$ and $\underline{\lim}(ax_n) = a(\underline{\lim} x_n)$ for $a \ge 0$;
- (iii) if $x_n \leq y_n$ for all n, then $\overline{\lim} x_n \leq \overline{\lim} y_n$ and $\underline{\lim} x_n \leq \underline{\lim} y_n$;
- (*iv*) $\underline{\lim} x_n + \underline{\lim} y_n \le \underline{\lim} (x_n + y_n) \le \underline{\lim} x_n + \overline{\lim} y_n \le \overline{\lim} (x_n + y_n) \le \overline{\lim} x_n + \overline{\lim} y_n.$

Example 5. Let (x_n) be a bounded sequence of real numbers. Let $s \in \mathbb{R}$. Show that

- (i) $\overline{\lim} x_n \leq s$ if and only if for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $x_n < s + \varepsilon$ for all $n \geq N$; and
- (ii) $\lim x_n \ge s$ if and only if for any $\varepsilon > 0$, for all $N \in \mathbb{N}$, there is $n \ge N$ such that $x_n > s \varepsilon$.

Example 6. Let (x_n) be a sequence of positive real numbers such that (x_{n+1}/x_n) is bounded. Show that $(\sqrt[n]{x_n})$ is also bounded and that

$$\liminf_{n} \frac{x_{n+1}}{x_n} \le \liminf_{n} \sqrt[n]{x_n} \le \limsup_{n} \sqrt[n]{x_n} \le \limsup_{n} \frac{x_{n+1}}{x_n}.$$