THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 3

Subsequences

Definition. Let $\left(x_{n}\right)$ be a sequence of real numbers and let $n_{1}<n_{2}<\cdots<n_{k}<\cdots$ be a strictly increasing sequence of natural numbers. Then the sequence $\left(x_{n_{k}}\right)$ is called a subsequence of $\left(x_{n}\right)$.

Theorem 1. Let $\left(x_{n}\right)$ be a sequence of real numbers. Then the following are equivalent:
(i) $\left(x_{n}\right)$ does not converge to $x \in \mathbb{R}$.
(ii) There exists $\varepsilon_{0}>0$ such that for any $k \in \mathbb{N}$, there exists $n_{k} \in \mathbb{N}$ such that $n_{k} \geq k$ and $\left|x_{n_{k}}-x\right| \geq \varepsilon_{0}$.
(iii) There exists $\varepsilon_{0}>0$ and a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\left|x_{n_{k}}-x\right| \geq \varepsilon_{0}$ for all $k \in \mathbb{N}$.

Example 1. Let $\ell \in \mathbb{R}$. Show that a sequence $\left(x_{n}\right)$ converges to ℓ if and only if every subsequence of $\left(x_{n}\right)$ has a further subsequence that converges to ℓ

Example 2. Show that if $\left(x_{n}\right)$ is unbounded, then it has a subsequence $\left(x_{n_{k}}\right)$ such that $\lim \left(1 / x_{n_{k}}\right)=0$.

Bolzano-Weierstrass Theorem

The Bolzano-Weierstrass Theorem. A bounded sequence of real numbers has a convergent subsequence

Example 3. Prove that a bounded divergent sequence has two subsequences converging to different limits.

Limit Superior and Limit Inferior

Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. For each $n \in \mathbb{N}$, define

$$
a_{n}=\inf _{k \geq n} x_{k}=\inf \left\{x_{k}: k \geq n\right\} \quad \text { and } \quad b_{n}=\sup _{k \geq n} x_{k}=\sup \left\{x_{k}: k \geq n\right\} .
$$

Then $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are both monotone ($\left(a_{n}\right)$ increasing and $\left(b_{n}\right)$ decreasing) and bounded, hence convergent.

Definition. The limit inferior and limit superior of $\left(x_{n}\right)$ are defined, respectively, by

$$
\begin{aligned}
& \underline{\lim } x_{n}:=\lim a_{n}=\sup _{n \geq 1}\left(\inf _{k \geq n} x_{k}\right), \\
& \overline{\lim } x_{n}:=\lim b_{n}=\inf _{n \geq 1}\left(\sup _{k \geq n} x_{k}\right) .
\end{aligned}
$$

Example 4. Alternate the terms of the sequences $(1+1 / n)$ and $(-1 / n)$ to obtain the sequence (x_{n}) given by

$$
(2,-1,3 / 2,-1 / 2,4 / 3,-1 / 3,5 / 4,-1 / 4, \ldots)
$$

Determine the values of $\overline{\lim }\left(x_{n}\right)$ and $\underline{\lim }\left(x_{n}\right)$.
Proposition 2. Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. Then we have
(i) $\underline{\lim } x_{n} \leq \varlimsup x_{n}$;
(ii) $\left(x_{n}\right)$ converges to ℓ if and only if $\overline{\lim } x_{n}=\underline{\lim } x_{n}$. In this case, we have $\lim x_{n}=$ $\underline{\lim } x_{n}=\varlimsup x_{n}$.

Proposition 3. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be bounded sequences of real numbers. Then we have
(i) $\overline{\lim }\left(-x_{n}\right)=-\underline{\lim } x_{n}$;
(ii) $\overline{\lim }\left(a x_{n}\right)=a\left(\overline{\lim } x_{n}\right)$ and $\underline{\lim }\left(a x_{n}\right)=a\left(\underline{\lim } x_{n}\right)$ for $a \geq 0$;
(iii) if $x_{n} \leq y_{n}$ for all n, then $\overline{\lim } x_{n} \leq \overline{\lim } y_{n}$ and $\underline{\lim } x_{n} \leq \underline{\lim } y_{n}$;
(iv) $\underline{\lim } x_{n}+\underline{\lim } y_{n} \leq \underline{\lim }\left(x_{n}+y_{n}\right) \leq \underline{\lim } x_{n}+\varlimsup y_{n} \leq \overline{\lim }\left(x_{n}+y_{n}\right) \leq \overline{\lim } x_{n}+\overline{\lim } y_{n}$.

Example 5. Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. Let $s \in \mathbb{R}$. Show that
(i) $\overline{\lim } x_{n} \leq s$ if and only if for any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that $x_{n}<s+\varepsilon$ for all $n \geq N$; and
(ii) $\overline{\lim } x_{n} \geq s$ if and only if for any $\varepsilon>0$, for all $N \in \mathbb{N}$, there is $n \geq N$ such that $x_{n}>s-\varepsilon$.

Example 6. Let $\left(x_{n}\right)$ be a sequence of positive real numbers such that $\left(x_{n+1} / x_{n}\right)$ is bounded. Show that $\left(\sqrt[n]{x_{n}}\right)$ is also bounded and that

$$
\liminf _{n} \frac{x_{n+1}}{x_{n}} \leq \liminf _{n} \sqrt[n]{x_{n}} \leq \limsup _{n} \sqrt[n]{x_{n}} \leq \limsup _{n} \frac{x_{n+1}}{x_{n}}
$$

