THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 2

The Limit of a Sequence

Definition. A sequence $X=\left(x_{n}\right)$ in \mathbb{R} is said to converge to $x \in \mathbb{R}$, or x is said to be a limit of $\left(x_{n}\right)$, if for every $\varepsilon>0$ there exists a natural number $K(\varepsilon)$ such that for all $n \geq K(\varepsilon)$, the terms x_{n} satisfy $\left|x_{n}-x\right|<\varepsilon$.

Notations: $\lim X=x, \quad \lim \left(x_{n}\right)=x, \quad \lim _{n} x_{n}=x, \quad \lim _{n \rightarrow \infty} x_{n}=x$.
Steps. To show that $\lim \left(x_{n}\right)=x$, we may proceed as follow:
(1) Fix an $\varepsilon>0$. (ε is arbitrary, but cannot be changed once fixed.)
(2) Find a useful estimate for $\left|x_{n}-x\right|$.
(3) Find $K(\varepsilon) \in \mathbb{N}$ such that the estimate in (2) is less than ε whenever $n \geq K(\varepsilon)$.
(4) Complete the proof.

Example 1. Use the definition of the limit of a sequence to show $\lim \left(\frac{n^{2}-n}{2 n^{2}+3}\right)=\frac{1}{2}$.
Example 2. Let $\left(y_{n}\right)$ be a sequence of positive numbers such that $\lim _{n} y_{n}=2$. By virtue of $\varepsilon-N$ terminology, show that

$$
\lim _{n} \frac{y_{n}}{y_{n}^{2}-3}=2
$$

Example 3. Let $\left(x_{n}\right)$ be a sequence of real numbers. Define

$$
s_{n}=\frac{x_{1}+x_{2} \cdots+x_{n}}{n} \quad \text { for all } n \in \mathbb{N} .
$$

(a) If $\lim \left(x_{n}\right)=\ell$, where $\ell \in \mathbb{R}$, show that $\lim \left(s_{n}\right)=\ell$.
(b) Is the converse of (a) true?

Squeeze Theorem. Let $\left(x_{n}\right),\left(y_{n}\right)$ and $\left(z_{n}\right)$ be sequences of real numbers such that

$$
x_{n} \leq y_{n} \leq z_{n} \quad \text { for all } n \in \mathbb{N}
$$

If $\ell:=\lim x_{n}=\lim z_{n}$, then $\left(y_{n}\right)$ is convergent and $\lim y_{n}=\ell$.
Example 4. Show that $\lim _{n \rightarrow \infty} \frac{(2 \sqrt[n]{n}-1)^{n}}{n^{2}}=1$.

