THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 10

Uniform Continuity

Uniform Continuity Theorem. Let f be a continuous function on A. If A is compact, then f is uniformly continuous on A.

Example 1. Let f and g be uniformly continuous functions on $A \subseteq \mathbb{R}$.

- (a) Is it always true that their product fg is also uniformly continuous on A?
- (b) What if we further assume that f and g are both bounded on A?

Example 2. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be periodic on \mathbb{R} if there exists a number p > 0 such that f(x + p) = f(x) for all $x \in \mathbb{R}$. Prove that a continuous periodic function on \mathbb{R} is bounded and uniformly continuous on \mathbb{R} .

Example 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \ell \in \mathbb{R}$. Show that f is uniformly continuous on \mathbb{R} .