THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH2058 Honours Mathematical Analysis I Tutorial 1

Axiom of Completeness of \mathbb{R}

Definition. Let S be a nonempty subset of \mathbb{R}. Suppose S is bounded above. Then $u \in \mathbb{R}$ is said to be a supremum of S if it satisfies the conditions:
(i) u is an upper bound of S (that is, $s \leq u$ for all $s \in S$), and
(ii) if v is any upper bound of S, then $u \leq v$.

Here (ii) is equivalent to either of the following:
(ii)' if $v<u$, then there exists $s_{v} \in S$ such that $v<s_{v}$,
(ii)" for any $\varepsilon>0$, there exists $s_{0} \in S$ such that $u-\varepsilon<s_{0}$.

Remarks. (1) u may or may not be an element of S.
(2) The number u is unique and we write $\sup S=u$.
(3) inf S can be defined similarly provided S is bounded below.

Example 1. Find the infimum and supremum, if they exist, of the set $A:=\{x \in \mathbb{R}$: $1 / x<x\}$. Justify your answers.

Axiom of Completeness of \mathbb{R}. Every nonempty set of real numbers that has an upper bound also has a supremum in \mathbb{R}.

Example 2. Let A and B be nonempty subsets of \mathbb{R}, and let $A+B:=\{a+b: a \in A, b \in$ $B\}$. Prove that, if A and B are bounded above, then

$$
\sup (A+B)=\sup A+\sup B
$$

Archimedean Property. For each $x \in \mathbb{R}$, there is a positive integer n such that $x<n$.
Example 3. Determine the supremum and infimum of the set

$$
S:=\left\{\frac{k}{2^{n}}: k, n \in \mathbb{N}, \frac{k}{2^{n}}<\sqrt{2}\right\} .
$$

Justify your answer.
Example 4. Let $\omega \in \mathbb{R}$ be an irrational positive number. Set

$$
A=\{m+n \omega: m+n \omega>0 \text { and } m, n \in \mathbb{Z}\} .
$$

Show that $\inf A=0$.

