THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH2058 Honours Mathematical Analysis I Suggested Solution of Class Test

1. (10 points)
(i) Use the $\varepsilon-\delta$ notation to see whether the limit $\lim _{x \rightarrow 0^{+}} \frac{\tan x}{x^{2}}$ exists.
(ii) Let $f(x):=x-[[x]]$ for $x>0$, where $[[x]]:=\min \{n \in \mathbb{N}: x<n\}$. Find the set of all discontinuous points of f.

Solution. (i) We will show that $\lim _{x \rightarrow 0^{+}} \frac{\tan x}{x^{2}}=+\infty$.
Note that for $x>0$, we have $\tan x \geq x$, and hence $\frac{\tan x}{x^{2}} \geq \frac{1}{x}$.
Let $M>0$. Take $\delta=1 / M>0$. Then, for any $x \in(0, \infty)$ with $0<x-0<\delta$, we have

$$
\frac{\tan x}{x^{2}} \geq \frac{1}{x}>\frac{1}{\delta}=M .
$$

Hence $\lim _{x \rightarrow 0^{+}} \frac{\tan x}{x^{2}}=+\infty$.
(ii) Note that

$$
f(x)= \begin{cases}x-1 & \text { if } 0<x<1 \\ x-n-1 & \text { if } n \leq x<n+1, n \in \mathbb{N}\end{cases}
$$

We will show that f is discontinuous on \mathbb{N}, and continuous elsewhere on $(0, \infty)$. Let $n \in \mathbb{N}$. Then $\lim _{x \rightarrow n^{-}} f(x)=\lim _{x \rightarrow n^{-}}(x-n)=0$ but $f(n)=n-n-1=-1$. Hence f is discontinuous at n.
For $c \in(0, \infty) \backslash \mathbb{N}$, there is $n \in \mathbb{N}$ such that $n-1<c<n$. Take $\delta=$ $\frac{1}{2} \min \{c-(n-1), n-c\}$. Then, for any $x \in(c-\delta, c+\delta)$,

$$
|f(x)-f(c)|=|(x-n)-(c-n)|=|x-c| .
$$

So f is continuous at c.
2. (20 points) Let $f: \mathbb{R} \rightarrow[0,1]$ be a function.
(i) Use the $\varepsilon-\delta$ notation to show that f is discontinuous at a point $c \in \mathbb{R}$ if and only if $\lim _{x \rightarrow c^{+}} f(x) \neq f(c)$ or $\lim _{x \rightarrow c^{-}} f(x) \neq f(c)$.
(ii) Show that if f is strictly increasing, then the set of all discontinuous points of f is countable.

Solution. (i) It is the same as showing that f is continuous at $c \in \mathbb{R}$ if and only if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$ and $\lim _{x \rightarrow c^{-}} f(x)=f(c)$.

Clearly $D_{r}(\mathbb{R})=D_{l}(\mathbb{R})=\mathbb{R}$. So we can talk about one-sided limits at any point $c \in \mathbb{R}$.
(\Longrightarrow) Suppose f is continuous at $c \in \mathbb{R}$. Let $\varepsilon>0$. Then there is $\delta>0$ such that $|f(x)-f(c)|<\varepsilon$ whenever $|x-c|<\delta$. In particular, $|f(x)-f(c)|<\varepsilon$ for all x with $0<x-c<\delta$; and $|f(x)-f(c)|<\varepsilon$ for all x with $0<c-x<\delta$. Therefore, $\lim _{x \rightarrow c^{+}} f(x)=f(c)$ and $\lim _{x \rightarrow c^{-}} f(x)=f(c)$.
(\Longleftarrow) Suppose $\lim _{x \rightarrow c^{+}} f(x)=f(c)$ and $\lim _{x \rightarrow c^{-}} f(x)=f(c)$. Let $\varepsilon>0$. Then there is $\delta_{1}>0$ such that $|f(x)-f(c)|<\varepsilon$ for all x with $0<x-c<\delta_{1}$; and there is $\delta_{2}>0$ such that $|f(x)-f(c)|<\varepsilon$ for all x with $0<c-x<\delta_{2}$. By taking $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, we have (since the inequality below is clearly true when $x=c$),

$$
|f(x)-f(c)|<\varepsilon \quad \text { whenever }|x-c|<\delta
$$

Therefore f is continuous at c.
(ii) Let D be the set of discontinuity points of f. Since f is increasing, the limits

$$
f(c+)=\lim _{x \rightarrow c^{+}} f(x) \quad \text { and } \quad f(c-)=\lim _{x \rightarrow c^{-}} f(x), \quad c \in \mathbb{R}
$$

exist and satisfy $f(c-) \leq f(c) \leq f(c+)$. So $c \in D$ if and only if $f(c)-f(c-)>$ 0 or $f(c+)-f(c)>0$. Put $J(c-):=[f(c-), f(c)]$ and $J(c+):=[f(c), f(c+)]$. Then $J(c+)$ or $J(c-)$ is an interval. Therefore, if we put $\alpha(c)$ the length of $(J(c-) \cup J(c+))$ for $c \in D_{m}$, then $\alpha(c)>0$. On the other hand, if $c_{1}, c_{2} \in D$ with $c_{1}<c_{2}$, then $J\left(c_{1}+\right) \cap J\left(c_{2}-\right)$ has at most one point if they exist. Thus, we have

$$
0<\sum_{c \in D} \alpha(c) \leq 1-0=1
$$

Since $\alpha(c)>0$ for all $c \in D$, the set D needs to be countable. In fact, note that we have

$$
D=\bigcup_{c \in \mathbb{Z}+}\{c \in D: \alpha(c) \geq 1 / k\}
$$

Thus, if D is uncountable, then there exists a positive integer k so that $R:=$ $\{c \in D: \alpha(c) \geq 1 / k\}$ is infinite. Therefore, $\sum_{c \in R} \alpha(c)$ is infinite. It leads to a contradiction.
3. (20 points) Prove or disprove the following statements.
(i) Let $f: A \rightarrow B$ be a homeomorphism from A onto B, where A and B are non-empty subsets of \mathbb{R}. Let $\left(x_{n}\right)$ be a sequence in A. If $\left(x_{n}\right)$ is a Cauchy sequence, then so is $f\left(x_{n}\right)$.
(ii) If $f:(0,1) \rightarrow \mathbb{R}$ is a bounded continuous injection, then it is impossible to find a point $x_{0} \in(0,1)$ such that $f\left(x_{0}\right)=\sup \{f(x): x \in(0,1)\}$.
(iii) Let $f: E \rightarrow \mathbb{R}$ be a continuous function defined on a closed subset E of \mathbb{R}. If z is a limit point of $f(E)$, then $z \in f(E)$.

Solution. (i) The statement is false.
Consider the function $f:(0,1] \rightarrow[1, \infty)$ defined by $f(x)=1 / x$. Then f is a continuous bijection with inverse $f^{-1}(x)=1 / x$, which is also continuous. So f is a homeomorphism.
For $x_{n}:=1 / n,\left(x_{n}\right)$ is convergent, hence a Cauchy sequence in $(0,1)$. However, $f\left(x_{n}\right)=n$ is unbounded. So $\left(f\left(x_{n}\right)\right)$ is not a Cauchy sequence.
(ii) The statement is true.

Suppose there is $x_{0} \in(0,1)$ such that $f\left(x_{0}\right)=\sup \{f(x): x \in(0,1)\}$. Since $x_{0} \in(0,1)$, there exist $x_{1}, x_{2} \in(0,1)$ such that $x_{1}<x_{0}<x_{2}$. Because f is injective and $f\left(x_{0}\right)=\sup \{f(x): x \in(0,1)\}$, we have either

$$
f\left(x_{1}\right)<f\left(x_{2}\right)<f\left(x_{0}\right)
$$

or

$$
f\left(x_{2}\right)<f\left(x_{1}\right)<f\left(x_{0}\right) .
$$

If it is the first case, then the Intermediate Value Theorem implies that there is $c \in\left(x_{1}, x_{0}\right)$ such that $f(c)=f\left(x_{2}\right)$, contradicting the injectivity of f. If it is the second case, the same argument leads to a contradiction.
(iii) The statement is false.

Consider the function $f:[1, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=1 / x$. Then $[1, \infty)$ is a closed subset of \mathbb{R}, f is a continuous function on $[1, \infty)$, and $f([1, \infty))=(0,1]$. Now 0 is a limit point of $(0,1]$ but $0 \notin(0,1]$.

