THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Suggested Solution of Class Test

1. (10 points)

- (i) Use the $\varepsilon \delta$ notation to see whether the limit $\lim_{x \to 0^+} \frac{\tan x}{x^2}$ exists.
- (ii) Let $f(x) \coloneqq x [[x]]$ for x > 0, where $[[x]] \coloneqq \min\{n \in \mathbb{N} : x < n\}$. Find the set of all discontinuous points of f.

Solution. (i) We will show that $\lim_{x\to 0^+} \frac{\tan x}{x^2} = +\infty$.

Note that for x > 0, we have $\tan x \ge x$, and hence $\frac{\tan x}{x^2} \ge \frac{1}{x}$. Let M > 0. Take $\delta = 1/M > 0$. Then, for any $x \in (0, \infty)$ with $0 < x - 0 < \delta$, we have

$$\frac{\tan x}{x^2} \ge \frac{1}{x} > \frac{1}{\delta} = M.$$

Hence $\lim_{x \to 0^+} \frac{\tan x}{x^2} = +\infty.$

(ii) Note that

$$f(x) = \begin{cases} x - 1 & \text{if } 0 < x < 1\\ x - n - 1 & \text{if } n \le x < n + 1, n \in \mathbb{N}. \end{cases}$$

We will show that f is discontinuous on \mathbb{N} , and continuous elsewhere on $(0, \infty)$. Let $n \in \mathbb{N}$. Then $\lim_{x \to n^-} f(x) = \lim_{x \to n^-} (x - n) = 0$ but f(n) = n - n - 1 = -1. Hence f is discontinuous at n.

For $c \in (0,\infty) \setminus \mathbb{N}$, there is $n \in \mathbb{N}$ such that n-1 < c < n. Take $\delta = \frac{1}{2} \min\{c - (n-1), n-c\}$. Then, for any $x \in (c - \delta, c + \delta)$,

$$|f(x) - f(c)| = |(x - n) - (c - n)| = |x - c|.$$

So f is continuous at c.

◀

- 2. (20 points) Let $f : \mathbb{R} \to [0, 1]$ be a function.
 - (i) Use the $\varepsilon \delta$ notation to show that f is discontinuous at a point $c \in \mathbb{R}$ if and only if $\lim_{x \to c^+} f(x) \neq f(c)$ or $\lim_{x \to c^-} f(x) \neq f(c)$.
 - (ii) Show that if f is strictly increasing, then the set of all discontinuous points of f is countable.
 - **Solution.** (i) It is the same as showing that f is continuous at $c \in \mathbb{R}$ if and only if $\lim_{x \to c^+} f(x) = f(c)$ and $\lim_{x \to c^-} f(x) = f(c)$.

Clearly $D_r(\mathbb{R}) = D_l(\mathbb{R}) = \mathbb{R}$. So we can talk about one-sided limits at any point $c \in \mathbb{R}$.

 $(\implies) \text{ Suppose } f \text{ is continuous at } c \in \mathbb{R}. \text{ Let } \varepsilon > 0. \text{ Then there is } \delta > 0 \text{ such that } |f(x) - f(c)| < \varepsilon \text{ whenever } |x - c| < \delta. \text{ In particular, } |f(x) - f(c)| < \varepsilon \text{ for all } x \text{ with } 0 < x - c < \delta; \text{ and } |f(x) - f(c)| < \varepsilon \text{ for all } x \text{ with } 0 < c - x < \delta. \text{ Therefore, } \lim_{x \to c^+} f(x) = f(c) \text{ and } \lim_{x \to c^-} f(x) = f(c).$

 (\Leftarrow) Suppose $\lim_{x\to c^+} f(x) = f(c)$ and $\lim_{x\to c^-} f(x) = f(c)$. Let $\varepsilon > 0$. Then there is $\delta_1 > 0$ such that $|f(x) - f(c)| < \varepsilon$ for all x with $0 < x - c < \delta_1$; and there is $\delta_2 > 0$ such that $|f(x) - f(c)| < \varepsilon$ for all x with $0 < c - x < \delta_2$. By taking $\delta = \min{\{\delta_1, \delta_2\}}$, we have (since the inequality below is clearly true when x = c),

 $|f(x) - f(c)| < \varepsilon$ whenever $|x - c| < \delta$.

Therefore f is continuous at c.

(ii) Let D be the set of discontinuity points of f. Since f is increasing, the limits

$$f(c+) = \lim_{x \to c^+} f(x)$$
 and $f(c-) = \lim_{x \to c^-} f(x)$, $c \in \mathbb{R}$

exist and satisfy $f(c-) \leq f(c) \leq f(c+)$. So $c \in D$ if and only if f(c) - f(c-) > 0 or f(c+) - f(c) > 0. Put J(c-) := [f(c-), f(c)] and J(c+) := [f(c), f(c+)]. Then J(c+) or J(c-) is an interval. Therefore, if we put $\alpha(c)$ the length of $(J(c-) \cup J(c+))$ for $c \in D_m$, then $\alpha(c) > 0$. On the other hand, if $c_1, c_2 \in D$ with $c_1 < c_2$, then $J(c_1+) \cap J(c_2-)$ has at most one point if they exist. Thus, we have

$$0 < \sum_{c \in D} \alpha(c) \le 1 - 0 = 1.$$

Since $\alpha(c) > 0$ for all $c \in D$, the set D needs to be countable. In fact, note that we have

$$D = \bigcup_{c \in \mathbb{Z}+} \{ c \in D : \alpha(c) \ge 1/k \}.$$

Thus, if D is uncountable, then there exists a positive integer k so that $R := \{c \in D : \alpha(c) \ge 1/k\}$ is infinite. Therefore, $\sum_{c \in R} \alpha(c)$ is infinite. It leads to a contradiction.

- 3. (20 points) Prove or disprove the following statements.
 - (i) Let $f : A \to B$ be a homeomorphism from A onto B, where A and B are non-empty subsets of \mathbb{R} . Let (x_n) be a sequence in A. If (x_n) is a Cauchy sequence, then so is $f(x_n)$.
 - (ii) If $f: (0,1) \to \mathbb{R}$ is a bounded continuous injection, then it is impossible to find a point $x_0 \in (0,1)$ such that $f(x_0) = \sup\{f(x) : x \in (0,1)\}$.
 - (iii) Let $f: E \to \mathbb{R}$ be a continuous function defined on a closed subset E of \mathbb{R} . If z is a limit point of f(E), then $z \in f(E)$.

Solution. (i) The statement is false.

Consider the function $f: (0,1] \to [1,\infty)$ defined by f(x) = 1/x. Then f is a continuous bijection with inverse $f^{-1}(x) = 1/x$, which is also continuous. So f is a homeomorphism.

For $x_n := 1/n$, (x_n) is convergent, hence a Cauchy sequence in (0, 1). However, $f(x_n) = n$ is unbounded. So $(f(x_n))$ is not a Cauchy sequence.

(ii) The statement is true.

Suppose there is $x_0 \in (0,1)$ such that $f(x_0) = \sup\{f(x) : x \in (0,1)\}$. Since $x_0 \in (0,1)$, there exist $x_1, x_2 \in (0,1)$ such that $x_1 < x_0 < x_2$. Because f is injective and $f(x_0) = \sup\{f(x) : x \in (0,1)\}$, we have either

$$f(x_1) < f(x_2) < f(x_0)$$

or

$$f(x_2) < f(x_1) < f(x_0)$$

If it is the first case, then the Intermediate Value Theorem implies that there is $c \in (x_1, x_0)$ such that $f(c) = f(x_2)$, contradicting the injectivity of f. If it is the second case, the same argument leads to a contradiction.

(iii) The statement is false.

Consider the function $f:[1,\infty) \to \mathbb{R}$ defined by f(x) = 1/x. Then $[1,\infty)$ is a closed subset of \mathbb{R} , f is a continuous function on $[1,\infty)$, and $f([1,\infty)) = (0,1]$. Now 0 is a limit point of (0,1] but $0 \notin (0,1]$.