MATH2058: Mathematical Analysis I

Important Notice:

\& The answer paper Must be submitted before 28 Oct 2023 at 5:00 pm.

- You are NOT allowed to resubmit your answer paper again after submission
© The answer paper MUST BE sent to the CU Blackboard.
© The answer paper MUST BE sent in pdf format IN ONE-file (Other format files, for example, jpg files, are NOT ACCEPTED).
The answer paper Must include your name and student ID in each page.

Answer ALL Questions

1. (10 points)

Let C be a countably infinite set of non-negative real valued functions defined on \mathbb{R}. Assume that for any sequence $\left(g_{m}\right)$ in C and for any sequence of real numbers $\left(a_{m}\right)$, we have

$$
\sup \left\{\sum_{m=1}^{r} g_{m}\left(a_{m}\right): r=1,2 \ldots\right\}<\infty
$$

Show that $\lim _{m \rightarrow \infty} \sup \left\{g\left(x_{m}\right): g \in C\right\}=0$ for all sequences $\left(x_{m}\right)$.
2. (10 points)

For each $n=1,2, \ldots$, let $f_{n}(x):=\sin ^{n} x, x \in \mathbb{R}$. Show that there is a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ such that $\lim _{k \rightarrow \infty} f_{n_{k}}(r)$ exists for any rational number r.

$$
* * * \text { See Next Page } * * *
$$

3. (20 points)

Let $f_{n}:[0,1] \rightarrow[0, \infty)$ be a sequence of functions, $n=1,2, \ldots$. Assume that for each $n=1,2, \ldots$, , we have

$$
\sup \left\{\sum_{t \in F} f_{n}(t): F \text { is any finite subset of }[0,1]\right\}<\infty .
$$

(a) For each $n=1,2 .$. , let $D_{n}:=\left\{t \in[0,1]: f_{n}(t)=0\right\}$. Show that $D:=\bigcap_{n=1}^{\infty} D_{n} \neq \emptyset$.
(b) Does there exist a limit point of the set D defined in above?

