Important Notice:

The answer paper Must be submitted before 28 Oct 2023 at 5:00 pm.

¶ You are NOT allowed to resubmit your answer paper again after submission

♠ The answer paper MUST BE sent to the CU Blackboard.

♠ The answer paper MUST BE sent in pdf format IN ONE-file (Other format files, for example, jpg files, are NOT ACCEPTED).

H The answer paper Must include your name and student ID in each page.

Answer ALL Questions

1. (10 points)

Let C be a countably infinite set of non-negative real valued functions defined on \mathbb{R} . Assume that for any sequence (g_m) in C and for any sequence of real numbers (a_m) , we have

$$\sup\{\sum_{m=1}^{r} g_m(a_m) : r = 1, 2...\} < \infty.$$

Show that $\lim_{m \to \infty} \sup\{g(x_m) : g \in C\} = 0$ for all sequences (x_m) .

2. (10 points)

For each $n = 1, 2, ..., \text{ let } f_n(x) := \sin^n x, x \in \mathbb{R}$. Show that there is a subsequence (f_{n_k}) of (f_n) such that $\lim_{k\to\infty} f_{n_k}(r)$ exists for any rational number r.

*** See Next Page ***

3. (20 points)

Let $f_n: [0,1] \to [0,\infty)$ be a sequence of functions, $n = 1, 2, \dots$ Assume that for each $n = 1, 2, \dots$, we have

$$\sup\{\sum_{t\in F} f_n(t): F \text{ is any finite subset of } [0,1]\} < \infty.$$

- (a) For each $n = 1, 2.., \text{ let } D_n := \{t \in [0, 1] : f_n(t) = 0\}$. Show that $D := \bigcap_{n=1}^{\infty} D_n \neq \emptyset$.
- (b) Does there exist a limit point of the set D defined in above?

*** END OF PAPER ***