MATH 2058 Mathematical Analysis I
 2023-24 Term 1
 Suggested Solution to Homework 8

5.4-6 Show that if f and g are uniformly continuous on $A \subseteq \mathbb{R}$ and if they are both bounded on A, then their product $f g$ is uniformly continuous on A.

Solution. Since f and g are bounded on A, there exists $M>0$, such that $|f|,|g| \leq M$ on A. Let $\varepsilon>0$. Since f and g are both uniformly continuous on A, there exists $\delta>0$ such that if $x, u \in A$ and $|x-u|<\delta$, then

$$
|f(x)-f(u)|<\frac{\varepsilon}{2 M} \quad \text { and } \quad|g(x)-g(u)|<\frac{\varepsilon}{2 M}
$$

Hence, if $x, u \in A$ and $|x-u|<\delta$, then

$$
\begin{aligned}
|f g(x)-f g(u)| & =|f(x) g(x)-f(x) g(u)+f(x) g(u)-f(u) g(u)| \\
& \leq|f(x) g(x)-f(x) g(u)|+|f(x) g(u)-f(u) g(u)| \\
& =|f(x)||g(x)-g(u)|+|g(u)||f(x)-f(u)| \\
& \leq M|g(x)-g(u)|+M|f(x)-f(u)| \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Therefore, $f g$ is uniformly continuous on A.
5.4-7 If $f(x):=x$ and $g(x):=\sin x$, show that both f and g are uniformly continuous on \mathbb{R}, but that their product $f g$ is not uniformly continuous on \mathbb{R}.

Solution. First, we show f, g are all uniformly continuous. Note that

$$
|f(x)-f(u)|=|x-u|
$$

and

$$
|g(x)-g(u)|=|\sin x-\sin u|=2\left|\sin \frac{x-u}{2} \cos \frac{x+u}{2}\right| \leq 2\left|\frac{x-u}{2}\right|=|x-u|
$$

So, given any $\varepsilon>0$, if we choose $\delta=\varepsilon$, then whenever $x, u \in \mathbb{R}$ with $|x-u|<\delta$, we have

$$
|f(x)-f(u)|<\varepsilon, \quad|g(x)-g(u)|<\varepsilon
$$

Hence, f, g are both uniformly continuous on \mathbb{R}.
But $f g$ is not uniformly continuous. Consider $x_{n}:=2 \pi n, u_{n}:=2 \pi n+\frac{1}{n}$ for $n \in \mathbb{N}$. Clearly, we have $\lim \left(x_{n}-u_{n}\right)=\lim \frac{1}{n}=0$, and

$$
\left|f\left(x_{n}\right) g\left(x_{n}\right)-f\left(u_{n}\right) g\left(u_{n}\right)\right|=\left|0-\left(2 \pi n+\frac{1}{n}\right) \sin \frac{1}{n}\right| \geq 2 \pi n \sin \frac{1}{n}
$$

By the well-known limit $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, we have

$$
\lim 2 \pi n \sin \frac{1}{n}=2 \pi
$$

So for n large enough, say $n>N$ for some integer N, we will have $2 \pi n \sin \frac{1}{n} \geq \pi$, and thus

$$
\left|f\left(x_{n}\right) g\left(x_{n}\right)-f\left(u_{n}\right) g\left(u_{n}\right)\right| \geq \pi
$$

By Nonuniform Continuity Criteria, we know $f g$ is not uniformly continuous on \mathbb{R}.
5.4-8 Prove that if f and g are each uniformly continuous on \mathbb{R}, then the composite function $f \circ g$ is uniformly continuous on \mathbb{R}.

Solution. Let $\varepsilon>0$. Since f is uniformly continuous on \mathbb{R}, there exists $\delta_{1}>0$ such that

$$
|f(u)-f(v)|<\varepsilon \quad \text { whenever } u, v \in \mathbb{R} \text { with }|u-v|<\delta_{1}
$$

Since g is uniformly continuous on \mathbb{R}, there exists $\delta_{2}>0$ such that

$$
|g(x)-g(y)|<\delta_{1} \quad \text { whenever } x, y \in \mathbb{R} \text { with }|x-y|<\delta_{2}
$$

Now, if $x, y \in \mathbb{R}$ and $|x-y|<\delta_{2}$, then

$$
|(f \circ g)(x)-(f \circ g)(y)|=|f(g(x))-f(g(y))|<\varepsilon
$$

Therefore $f \circ g$ is uniformly continuous on \mathbb{R}.

