MATH 2058 Mathematical Analysis I 2023-24 Term 1 Suggested Solution to Homework 7

5.2-6 Let f, g be defined on \mathbb{R} and let $c \in \mathbb{R}$. Suppose that $\lim_{x \to c} f = b$ and that g is continuous at b. Show that $\lim_{x \to c} g \circ f = g(b)$. (Compare this result with Theorem 5.2.7 and the preceding exercise.)

Solution. Let $\varepsilon > 0$. Since g is continuous at b, we can find $\delta > 0$ such that for all $|x - b| < \delta$, we have $|g(x) - g(b)| < \varepsilon$. Since $\lim_{x \to c} f = b$, so for $\varepsilon' = \delta$, we can find $\delta' > 0$ such that if $0 < |x - c| < \delta'$, we have $|f(x) - b| < \delta$. Hence, if $0 < |x - c| < \delta'$, we have $|f(x) - b| < \delta$ and so

 $|(g \circ f)(x) - g(b)| = |g(f(x)) - g(b)| < \varepsilon.$

Therefore $\lim_{x \to c} g \circ f = g(b)$.

In the preceding exercise, g is not continuous at 1 = f(0) and $\lim_{x \to 0} g \circ f \neq (g \circ f)(0)$.

5.2-7 Give an example of a function $f : [0,1] \to \mathbb{R}$ that is discontinuous at every point of [0,1] but such that |f| is continuous on [0,1].

Solution. Let $f:[0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational,} \\ -1 & \text{if } x \text{ is irrational.} \end{cases}$$

Then f is discontinuous everywhere in [0, 1]. Given any $c \in [0, 1]$, we can find a sequence (x_n) of rational numbers and a sequence (y_n) irrational numbers such that $\lim(x_n) = \lim(y_n) = c$ but $\lim(f(x_n)) = 1$ while $\lim(f(y_n)) = -1$. Thus f is discontinuous at c by Discontinuity Criterion.

On the other hand, |f(x)| = 1 for any $x \in [0, 1]$, and a constant function is clearly continuous.

5.2-15 Let $f, g: \mathbb{R} \to \mathbb{R}$ be continuous at a point c, and let $h(x) \coloneqq \sup\{f(x), g(x)\}$ for $x \in \mathbb{R}$. Show that $h(x) = \frac{1}{2}(f(x) + g(x)) + \frac{1}{2}|f(x) - g(x)|$ for all $x \in \mathbb{R}$. Use this to show that h is continuous at c.

Solution. Define $l(x) \coloneqq \inf\{f(x), g(x)\}$. We claim that for any $x \in \mathbb{R}$,

$$h(x) + l(x) = f(x) + g(x), \quad h(x) - l(x) = |f(x) - g(x)|.$$

If $f(x) \leq g(x)$, then h(x) = g(x), l(x) = f(x) and the formulas follow; if g(x) < f(x), then h(x) = f(x), l(x) = g(x), and we have the same formulas similarly. Hence

$$h(x) = \frac{1}{2}[h(x) + l(x) + h(x) - l(x)] = \frac{1}{2}(f(x) + g(x)) + \frac{1}{2}|f(x) - g(x)|$$

Since both f and g are continuous at x = c, and $x \mapsto |x|$ is continuous on \mathbb{R} , it follows from Proposition 8.7 that h is continuous at x = c.