MATH 2058 Mathematical Analysis I
 2023-24 Term 1
 Suggested Solution to Homework 7

5.2-6 Let f, g be defined on \mathbb{R} and let $c \in \mathbb{R}$. Suppose that $\lim _{x \rightarrow c} f=b$ and that g is continuous at b. Show that $\lim _{x \rightarrow c} g \circ f=g(b)$. (Compare this result with Theorem 5.2.7 and the preceding exercise.)

Solution. Let $\varepsilon>0$. Since g is continuous at b, we can find $\delta>0$ such that for all $|x-b|<\delta$, we have $|g(x)-g(b)|<\varepsilon$. Since $\lim _{x \rightarrow c} f=b$, so for $\varepsilon^{\prime}=\delta$, we can find $\delta^{\prime}>0$ such that if $0<|x-c|<\delta^{\prime}$, we have $|f(x)-b|<\delta$. Hence, if $0<|x-c|<\delta^{\prime}$, we have $|f(x)-b|<\delta$ and so

$$
|(g \circ f)(x)-g(b)|=|g(f(x))-g(b)|<\varepsilon
$$

Therefore $\lim _{x \rightarrow c} g \circ f=g(b)$.
In the preceding exercise, g is not continuous at $1=f(0)$ and $\lim _{x \rightarrow 0} g \circ f \neq(g \circ f)(0)$.
5.2-7 Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ that is discontinuous at every point of $[0,1]$ but such that $|f|$ is continuous on $[0,1]$.

Solution. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ -1 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is discontinuous everywhere in $[0,1]$. Given any $c \in[0,1]$, we can find a sequence $\left(x_{n}\right)$ of rational numbers and a sequence $\left(y_{n}\right)$ irrational numbers such that $\lim \left(x_{n}\right)=\lim \left(y_{n}\right)=c$ but $\lim \left(f\left(x_{n}\right)\right)=1$ while $\lim \left(f\left(y_{n}\right)\right)=-1$. Thus f is discontinuous at c by Discontinuity Criterion. On the other hand, $|f(x)|=1$ for any $x \in[0,1]$, and a constant function is clearly continuous.
5.2-15 Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous at a point c, and let $h(x):=\sup \{f(x), g(x)\}$ for $x \in \mathbb{R}$. Show that $h(x)=\frac{1}{2}(f(x)+g(x))+\frac{1}{2}|f(x)-g(x)|$ for all $x \in \mathbb{R}$. Use this to show that h is continuous at c.

Solution. Define $l(x):=\inf \{f(x), g(x)\}$. We claim that for any $x \in \mathbb{R}$,

$$
h(x)+l(x)=f(x)+g(x), \quad h(x)-l(x)=|f(x)-g(x)| .
$$

If $f(x) \leq g(x)$, then $h(x)=g(x), l(x)=f(x)$ and the formulas follow; if $g(x)<f(x)$, then $h(x)=f(x), l(x)=g(x)$, and we have the same formulas similarly. Hence

$$
h(x)=\frac{1}{2}[h(x)+l(x)+h(x)-l(x)]=\frac{1}{2}(f(x)+g(x))+\frac{1}{2}|f(x)-g(x)|
$$

Since both f and g are continuous at $x=c$, and $x \mapsto|x|$ is continuous on \mathbb{R}, it follows from Proposition 8.7 that h is continuous at $x=c$.

