MATH 2058 Mathematical Analysis I
 2023-24 Term 1
 Suggested Solution to Homework 5

4.1-9 Use either the $\varepsilon-\delta$ definition of limit or the Sequential Criterion for limits, to establish the following limits.

$$
\text { (c) } \lim _{x \rightarrow 0} \frac{x^{2}}{|x|}=0 \text {. }
$$

Solution. Method I: $\varepsilon-\delta$ definition of limit.
For any $\varepsilon>0$, we choose $\delta=\varepsilon$. If $0<|x-0|<\delta$, then we have

$$
\left|\frac{x^{2}}{|x|}-0\right|=\frac{|x|^{2}}{|x|}=|x|<\delta=\varepsilon .
$$

Hence

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}=0
$$

Method II: Sequential Criterion for limits.
If $\left(x_{n}\right)$ is a sequence of real numbers that converges to 0 such that $x_{n} \neq 0$ for all $n \in \mathbb{N}$, we have

$$
\lim \left(\frac{x_{n}^{2}}{\left|x_{n}\right|}\right)=\lim \left(\left|x_{n}\right|\right)=0
$$

By the Sequential Criterion for limits, $\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}=0$.
4.1-12 Show that the following limits do not exist.
(c) $\lim _{x \rightarrow 0}(x+\operatorname{sgn}(x))$.

Solution. Denote $f(x):=x+\operatorname{sgn}(x), x \in \mathbb{R}$. Let $\left(a_{n}\right),\left(b_{n}\right)$ be two sequences defined by $a_{n}=\frac{1}{n}$, $b_{n}=-\frac{1}{n}$ for $n \in \mathbb{N}$. Then $a_{n}, b_{n} \neq 0$ for all $n \in \mathbb{N}$, and $\lim \left(a_{n}\right)=\lim \left(b_{n}\right)=0$. However, $\lim \left(f\left(a_{n}\right)\right)=\lim \left(\frac{1}{n}+1\right)=1$ while $\lim \left(f\left(b_{n}\right)\right)=\lim \left(-\frac{1}{n}-1\right)=-1$. By the Sequential Criterion (Proposition 7.5), $\lim _{x \rightarrow 0} f(x)$ does not exist.
4.1-15 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by setting $f(x):=x$ if x is rational, and $f(x)=0$ if x is irrational.
(a) Show that f has a limit at $x=0$.
(b) Use a sequential argument to show that if $c \neq 0$, then f does not have a limit at c.

Solution. (a) Given $\varepsilon>0$, set $\delta=\delta(\varepsilon)=\varepsilon$. If $0<|x-0|<\delta$, then either $|f(x)-0|=|x|<\varepsilon$ if x is rational or $|f(x)-0|=0<\varepsilon$ if x is irrational. Thus f has limit $L=0$ at $x=0$.
(b) In order to show the divergence, we show that for any $c \neq 0$ there exist two sequences (a_{n}) and $\left(b_{n}\right)$ converging to c while $\lim f\left(a_{n}\right) \neq \lim f\left(b_{n}\right)$.
By the density of rational numbers (Proposition 1.12), for each $n \in \mathbb{N}$, there exists $a_{n} \in \mathbb{Q}$ such that $c<a_{n}<c+\frac{1}{n}$. Then $\lim a_{n}=c$ by the Squeeze Theorem. Note that $f\left(a_{n}\right)=a_{n}$ and so $\lim f\left(a_{n}\right)=c$.
On the other hand, by the density of irrational numbers (Theorem 1.15), for each $n \in \mathbb{N}$, there exists $b_{n} \in \mathbb{R} \backslash \mathbb{Q}$ such that $c<b_{n}<c+\frac{1}{n}$. Similarly we have $\lim b_{n}=c$. Note that $f\left(b_{n}\right)=0$ and so $\lim f\left(b_{n}\right)=0$.
Since $\lim f\left(a_{n}\right) \neq \lim f\left(b_{n}\right), f$ does not have a limit at c.

