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3.5-2 Show directly from the definition that the following are Cauchy sequences.
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Solution. (a) Let ε > 0. Take N ∈ N such that 1/N < ε. Then, for n > m ≥ N , we have∣∣∣∣n + 1
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Therefore it is a Cauchy sequence.

(b) Let ε > 0. Take N ∈ N such that 1/N < ε. Then, for n > m ≥ N , we have∣∣∣∣(1 +
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Therefore it is a Cauchy sequence.

3.5-5 If xn :=
√
n, show that (xn) satisfies lim |xn+1 − xn| = 0, but it is not a Cauchy sequence.

Solution. Note that
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√
n + 1−

√
n =

1√
n + 1 +

√
n

for all n ∈ N.

Hence lim |xn+1 − xn| = 0.

However, (xn) is not a Cauchy sequence because |x4n − xn| =
√
n ≥ 1 for all n ∈ N.

3.5-9 If 0 < r < 1 and |xn+1 − xn| < rn for all n ∈ N, show that (xn) is a Cauchy sequence.

Solution. Note that, for n, k ∈ N, we have
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Let ε > 0. Since 0 < r < 1, we have lim(rn) = 0, and thus there exists N ∈ N such that

rn < (1− r)ε whenever n ≥ N . Now, for n ≥ N and k ∈ N, we have

|xn+k − xn| ≤
rn

1− r
< ε.

Therefore (xn) is a Cauchy sequence.


