MATH 2058 Mathematical Analysis I
 2023-24 Term 1
 Suggested Solution to Homework 4

3.5-2 Show directly from the definition that the following are Cauchy sequences.
(a) $\left(\frac{n+1}{n}\right)$,
(b) $\left(1+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)$.

Solution. (a) Let $\varepsilon>0$. Take $N \in \mathbb{N}$ such that $1 / N<\varepsilon$. Then, for $n>m \geq N$, we have

$$
\left|\frac{n+1}{n}-\frac{m+1}{m}\right|=\frac{n-m}{n m} \leq \frac{n}{n m}=\frac{1}{m} \leq \frac{1}{N}<\varepsilon .
$$

Therefore it is a Cauchy sequence.
(b) Let $\varepsilon>0$. Take $N \in \mathbb{N}$ such that $1 / N<\varepsilon$. Then, for $n>m \geq N$, we have

$$
\begin{aligned}
\left|\left(1+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)-\left(1+\frac{1}{2!}+\cdots+\frac{1}{m!}\right)\right| & =\frac{1}{(m+1)!}+\cdots+\frac{1}{n!} \\
& \leq \frac{1}{2^{m}}+\cdots+\frac{1}{2^{n-1}} \\
& =\frac{1}{2^{m}}\left(1+\cdots+\frac{1}{2^{n-m-1}}\right) \\
& \leq \frac{1}{2^{m-1}} \leq \frac{1}{m} \leq \frac{1}{N}<\varepsilon
\end{aligned}
$$

Therefore it is a Cauchy sequence.
3.5-5 If $x_{n}:=\sqrt{n}$, show that $\left(x_{n}\right)$ satisfies $\lim \left|x_{n+1}-x_{n}\right|=0$, but it is not a Cauchy sequence.

Solution. Note that

$$
x_{n+1}-x_{n}=\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}} \quad \text { for all } n \in \mathbb{N} .
$$

Hence $\lim \left|x_{n+1}-x_{n}\right|=0$.
However, $\left(x_{n}\right)$ is not a Cauchy sequence because $\left|x_{4 n}-x_{n}\right|=\sqrt{n} \geq 1$ for all $n \in \mathbb{N}$.
3.5-9 If $0<r<1$ and $\left|x_{n+1}-x_{n}\right|<r^{n}$ for all $n \in \mathbb{N}$, show that $\left(x_{n}\right)$ is a Cauchy sequence.

Solution. Note that, for $n, k \in \mathbb{N}$, we have

$$
\begin{aligned}
\left|x_{n+k}-x_{n}\right| & \leq\left|x_{n+k}-x_{n+k-1}\right|+\cdots+\left|x_{n+1}-x_{n}\right| \\
& <r^{n+k-1}+\cdots+r^{n} \\
& =r^{n}\left(r^{k-1}+\cdots+1\right) \\
& =r^{n} \cdot \frac{1-r^{k}}{1-r} \\
& \leq \frac{r^{n}}{1-r} .
\end{aligned}
$$

Let $\varepsilon>0$. Since $0<r<1$, we have $\lim \left(r^{n}\right)=0$, and thus there exists $N \in \mathbb{N}$ such that $r^{n}<(1-r) \varepsilon$ whenever $n \geq N$. Now, for $n \geq N$ and $k \in \mathbb{N}$, we have

$$
\left|x_{n+k}-x_{n}\right| \leq \frac{r^{n}}{1-r}<\varepsilon .
$$

Therefore $\left(x_{n}\right)$ is a Cauchy sequence.

