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3.5-2 Show directly from the definition that the following are Cauchy sequences.

(a) <n;1> (b) (1+21!+...+:d>,

Solution. (a) Let ¢ > 0. Take N € N such that 1/N < e. Then, for n > m > N, we have
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Therefore it is a Cauchy sequence.

(b) Let € > 0. Take N € N such that 1/N < . Then, for n > m > N, we have

1 1 1 1 1 1 1 1
+5+...+m — +5+...+m - 4.

Therefore it is a Cauchy sequence.

3.5-5 If z,, = y/n, show that (z,,) satisfies lim |z,,11 — x,| = 0, but it is not a Cauchy sequence.

Solution. Note that

Tn+l — Tn = \/n"‘l_\/?l:

for all n € N.
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Hence lim |z,,41 — z,,| = 0.

However, (z,,) is not a Cauchy sequence because |z4, — x,| = y/n > 1 for all n € N.
3.5-9 If 0 <r <1 and |xypy1 — xp| <" for all n € N, show that (x,) is a Cauchy sequence.

Solution. Note that, for n, k € N, we have
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Let ¢ > 0. Since 0 < r < 1, we have lim(r") = 0, and thus there exists N € N such that
"™ < (1 —r)e whenever n > N. Now, for n > N and k € N, we have
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Therefore () is a Cauchy sequence. O



