MATH 2058 Mathematical Analysis I 2023-24 Term 1

Suggested Solution to Homework 2

3.1-5 Use the definition of the limit of a sequence to establish the following limits.

(d)
$$\lim \left(\frac{n^2 - 1}{2n^2 + 3}\right) = \frac{1}{2}$$
.

Solution. Note that

$$\left| \frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} \right| = \frac{5}{4n^2 + 6} < \frac{5}{4n^2} < \frac{2}{n^2}$$
 for any $n \in \mathbb{N}$.

So for any $\varepsilon > 0$, we choose a natural number K such that $K > \sqrt{\frac{2}{\varepsilon}}$ by the Archimedean Property. Then for any $n \geq K$, we have

$$\left| \frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} \right| < \frac{2}{n^2} \le \frac{2}{K^2} < \varepsilon.$$

Hence

$$\lim \left(\frac{n^2 - 1}{2n^2 + 3}\right) = \frac{1}{2}.$$

3.1-8 Prove that $\lim(x_n) = 0$ if and only if $\lim(|x_n|) = 0$. Give an example to show that the convergence of $(|x_n|)$ need not imply the convergence of (x_n) .

Solution. First, we show a slightly stronger statement: $\lim(x_n) = \ell \implies \lim(|x_n|) = |\ell|$. For any $\varepsilon > 0$, we can find a natural number K such that for any $n \ge K$, we have

$$|x_n - \ell| < \varepsilon$$

by the definition of $\lim(x_n) = \ell$. Hence, by the reverse triangle inequality, we have,

$$||x_n| - |\ell|| \le |x_n - \ell| < \varepsilon$$
 for any $n \ge K$.

So $\lim(|x_n|) = |\ell|$.

Next, we show the converse: $\lim(|x_n|) = 0 \implies \lim(x_n) = 0$. Again, for any $\varepsilon > 0$, we can find a natural number K, such that for any $n \ge K$, we have $||x_n| - 0| < \varepsilon$, which is just $|x_n| < \varepsilon$. Hence, for $n \ge K$, we have

$$|x_n - 0| = |x_n| < \varepsilon.$$

So $\lim(x_n) = 0$.

Consider $(x_n) = ((-1)^n)$. Clearly (x_n) does not converge but $(|x_n|) = (|(-1)^n|) = (1)$, which is a constant sequence and converges.

3.2-23 Show that if (x_n) and (y_n) are convergent sequences, then the sequences (u_n) and (v_n) defined by $u_n := \max\{x_n, y_n\}$ and $v_n := \min\{x_n, y_n\}$ are also convergent.

Solution. By Exercise 2.2.18 in the textbook, if $a, b \in \mathbb{R}$, then

$$\max\{a,b\} = \frac{1}{2}(a+b+|a-b|) \quad \text{and} \quad \min\{a,b\} = \frac{1}{2}(a+b-|a-b|). \tag{1}$$

By Proposition 2.8 (of the lecture notes) and the proof in the previous question, $(|x_n - y_n|)$ is convergent. By (1) and Proposition 2.8 again, (u_n) and (v_n) are also convergent.

3.3-3 Let $x_1 \ge 2$ and $x_{n+1} := 1 + \sqrt{x_n - 1}$ for $n \in \mathbb{N}$. Show that (x_n) is decreasing and bounded below by 2. Find the limit.

Solution. First, it is easy to see from induction that $x_n \geq 2$ for all $n \in \mathbb{N}$.

Now for all $n \in \mathbb{N}$, since $x_n - 1 \ge 1$, we have

$$x_{n+1} - 1 = \sqrt{x_n - 1} \le x_n - 1.$$

So $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$, and (x_n) is a decreasing sequence.

Theorem 2.13 (Monotone Convergence Theorem) then implies that (x_n) is convergent. Suppose $A = \lim(x_n)$. Then $A \ge 2$ by Proposition 2.9 (of the lecture notes), and it satisfies

$$(A-1)^2 = A-1.$$

So A=2 or A=1. The latter is impossible since $A\geq 2$. Therefore $\lim (x_n)=2$.