MATH 2058 Mathematical Analysis I
 2023-24 Term 1
 Suggested Solution to Homework 2

3.1-5 Use the definition of the limit of a sequence to establish the following limits.
(d) $\lim \left(\frac{n^{2}-1}{2 n^{2}+3}\right)=\frac{1}{2}$.

Solution. Note that

$$
\left|\frac{n^{2}-1}{2 n^{2}+3}-\frac{1}{2}\right|=\frac{5}{4 n^{2}+6}<\frac{5}{4 n^{2}}<\frac{2}{n^{2}} \quad \text { for any } n \in \mathbb{N} .
$$

So for any $\varepsilon>0$, we choose a natural number K such that $K>\sqrt{\frac{2}{\varepsilon}}$ by the Archimedean Property. Then for any $n \geq K$, we have

$$
\left|\frac{n^{2}-1}{2 n^{2}+3}-\frac{1}{2}\right|<\frac{2}{n^{2}} \leq \frac{2}{K^{2}}<\varepsilon .
$$

Hence

$$
\lim \left(\frac{n^{2}-1}{2 n^{2}+3}\right)=\frac{1}{2}
$$

3.1-8 Prove that $\lim \left(x_{n}\right)=0$ if and only if $\lim \left(\left|x_{n}\right|\right)=0$. Give an example to show that the convergence of $\left(\left|x_{n}\right|\right)$ need not imply the convergence of $\left(x_{n}\right)$.

Solution. First, we show a slightly stronger statement: $\lim \left(x_{n}\right)=\ell \Longrightarrow \lim \left(\left|x_{n}\right|\right)=|\ell|$. For any $\varepsilon>0$, we can find a natural number K such that for any $n \geq K$, we have

$$
\left|x_{n}-\ell\right|<\varepsilon
$$

by the definition of $\lim \left(x_{n}\right)=\ell$. Hence, by the reverse triangle inequality, we have,

$$
\left|\left|x_{n}\right|-\left|\ell \| \leq\left|x_{n}-\ell\right|<\varepsilon \quad \text { for any } n \geq K .\right.\right.
$$

So $\lim \left(\left|x_{n}\right|\right)=|\ell|$.
Next, we show the converse: $\lim \left(\left|x_{n}\right|\right)=0 \Longrightarrow \lim \left(x_{n}\right)=0$. Again, for any $\varepsilon>0$, we can find a natural number K, such that for any $n \geq K$, we have $\left|\left|x_{n}\right|-0\right|<\varepsilon$, which is just $\left|x_{n}\right|<\varepsilon$. Hence, for $n \geq K$, we have

$$
\left|x_{n}-0\right|=\left|x_{n}\right|<\varepsilon .
$$

So $\lim \left(x_{n}\right)=0$.
Consider $\left(x_{n}\right)=\left((-1)^{n}\right)$. Clearly $\left(x_{n}\right)$ does not converge but $\left(\left|x_{n}\right|\right)=\left(\left|(-1)^{n}\right|\right)=(1)$, which is a constant sequence and converges.
3.2-23 Show that if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are convergent sequences, then the sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ defined by $u_{n}:=\max \left\{x_{n}, y_{n}\right\}$ and $v_{n}:=\min \left\{x_{n}, y_{n}\right\}$ are also convergent.

Solution. By Exercise 2.2.18 in the textbook, if $a, b \in \mathbb{R}$, then

$$
\begin{equation*}
\max \{a, b\}=\frac{1}{2}(a+b+|a-b|) \quad \text { and } \quad \min \{a, b\}=\frac{1}{2}(a+b-|a-b|) . \tag{1}
\end{equation*}
$$

By Proposition 2.8 (of the lecture notes) and the proof in the previous question, $\left(\left|x_{n}-y_{n}\right|\right)$ is convergent. By (1) and Proposition 2.8 again, $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are also convergent.
3.3-3 Let $x_{1} \geq 2$ and $x_{n+1}:=1+\sqrt{x_{n}-1}$ for $n \in \mathbb{N}$. Show that $\left(x_{n}\right)$ is decreasing and bounded below by 2 . Find the limit.

Solution. First, it is easy to see from induction that $x_{n} \geq 2$ for all $n \in \mathbb{N}$.
Now for all $n \in \mathbb{N}$, since $x_{n}-1 \geq 1$, we have

$$
x_{n+1}-1=\sqrt{x_{n}-1} \leq x_{n}-1 .
$$

So $x_{n} \geq x_{n+1}$ for all $n \in \mathbb{N}$, and (x_{n}) is a decreasing sequence.
Theorem 2.13 (Monotone Convergence Theorem) then implies that $\left(x_{n}\right)$ is convergent. Suppose $A=\lim \left(x_{n}\right)$. Then $A \geq 2$ by Proposition 2.9 (of the lecture notes), and it satisfies

$$
(A-1)^{2}=A-1 .
$$

So $A=2$ or $A=1$. The latter is impossible since $A \geq 2$. Therefore $\lim \left(x_{n}\right)=2$.

