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theorem can be formulated to establish the existence of a unique positive nth root of a,
denoted by /a or a'/", for each n € N.

Remark If in the proof of Theorem 2.4.7 we replace the set S by the set of rational
numbers 7' := {r € Q: 0 < r, r* < 2}, the argument then gives the conclusion that y :=
sup T satisfies y* = 2. Since we have seen in Theorem 2.1.4 that y cannot be a rational
number, it follows that the set T that consists of rational numbers does not have a supremum
belonging to the set Q. Thus the ordered field Q of rational numbers does nor possess the
Completeness Property.

Density of Rational Numbers in R

We now know that there exists at least one irrational real number, namely /2. Actually there
are “‘more” irrational numbers than rational numbers in the sense that the set of rational
numbers is countable (as shown in Section 1.3), while the set of irrational numbers is
uncountable (see Section 2.5). However, we next show that in spite of this apparent disparity,
the set of rational numbers is “dense” in R in the sense that given any two real numbers there
is a rational number between them (in fact, there are infinitely many such rational numbers).

2.4.8 The Density Theorem If x and y are any real numbers with x <y, then there
exists a rational number r € Q such that x < r < y.

Proof. Ttis no loss of generality (why?) to assume that x > 0. Since y —x > 0, it follows
from Corollary 2.4.5 that there exists # € N such that 1 /n <y — x. Therefore, we have
nx+1<mny. If we apply Corollary 24.6 to nx >0, we obtain m c N with
m— 1 < nx < m. Therefore, m < nx+1 < ny, whence nx < m < ny. Thus, the rational
number r := m/n satisfies x < r < y. QED.

To round out the discussion of the interlacing of rational and irrational numbers, we
have the same ‘‘betweenness property” for the set of irrational numbers.

2.4.9 Corollary If x and y are real numbers with x < v, then there exists an irrational
number z such that x < z < y.

Proof. If we apply the Density Theorem 2.4.8 to the real numbers x /+/2 and y / V2, we
obtain a rational number r # 0 (why?) such that

X
—<r<2,

V2 V2

Then z := r/2 is irrational (why?) and satisfies x < z < y.

Exercises for Section 2.4

Show that sup{1 —1/n:n € N} = 1.
If §:={1/n—1/m:n,m € N}, find inf S and sup S.

Let S C R be nonempty. Prove that if a number « in R has the properties: (i) for every n € N the
number u — 1/nis not an upper bound of S, and (ii) for every number # € N the number u + 1/n
is an upper bound of , then u = sup S. (This is the converse of Exercise 2.3.9)
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Let S be a nonempty bounded set in R.
(a) Leta >0, and let aS := {as : s € S}. Prove that

inf(aS) = ainf S, sup(aS) =asupS.
(b) Let b <0 and let bS = {bs: s € S}. Prove that

inf(bS) =bsupS, sup(bS)=binfS.

Let S be a set of nonnegative real numbers that is bounded above and let T := {x? : x € S}.
Prove that if # = sup S, then u? = sup 7. Give an example that shows the conclusion may be
false if the restriction against negative numbers is removed.

Let X be a nonempty set and let f : X — R have bounded range in R. If ¢ € R, show that
Example 2.4.1(a) implies that

sup{a +f(x): x € X} = a+ sup{f(x): x € X}.
Show that we also have
inf{a +f(x): x € X} = a+inf{f(x): x € X}.
Let A and B be bounded nonempty subsets of R, andletA + B := {a + b : a € A, b € B}. Prove
that sup(A + B) = sup A + sup B and inf(A + B) = inf A + inf B.
Let X be a nonempty set, and let fand g be defined on X and have bounded ranges in R. Show that

sup{f(x) + g(x): x € X} < sup{f(x): x € X} + sup{g(x) : x € X}

and that

inf{f(x) : x € X} +inf{g(x) : x € X} <inf{f(x) + g(x) : x € X}.
Give examples to show that each of these inequalities can be either equalities or strict
inequalities.

LetX=Y:={xeR:0<x<1}. Define 1: X x ¥ — R by h(x,y) = 2x +y.

(a) For each x € X, find f(x) := sup{A(x,y) : y € Y}; then find inf{f(x) : x € X}.

(b) Foreachy €Y, find g(y) := inf{A(x,y) : x € X}; then find sup{g(y) : y € Y}. Compare
with the result found in part (a).

Perform the computations in (a) and (b) of the preceding exercise for the function 2 : X x ¥ — R
defined by

0 ifx<y,
h(x’)))::{l if x > y.

Let X and Y be nonempty sets and let 7z : X x ¥ — R have bounded range in R. Let f : X — R
and g : ¥ — R be defined by

f(x) =sup{h(x,y) :ye Y}, g(y):=inf{h(x,y):x € X}.
Prove that

sup{g(y) : y € Y} <inf{f(x):x € X}.

We sometimes express this by writing

sup inf i(x,y) <inf suph(x,y).
y ¥ % P

Note that Exercises 9 and 10 show that the inequality may be either an equality or a strict
inequality.
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Let X and Y be nonempty sets and let 2 : X x ¥ — R have bounded range in R. Let F : X — R
and G : Y — R be defined by

F(x) :=sup{h(x,y) 1y € Y}, G(y):=sup{h(x,y):x e X}.
Establish the Principle of the Iterated Suprema:
sup{A(x,y) : x € X,y € Y} = sup{F(x) : x € X} =sup{G(y) 1y € Y'}
We sometimes express this in symbols by

sup A(x,y) = supsup /i(x,y) = supsup i(x,y).
X,y x Y y x
Given any x € R, show that there exists a unique n € Z such that n — 1 < x < n.
If y > 0, show that there exists n € N such that 1/2" < y.

Modify the argument in Theorem 2.4.7 to show that there exists a positive real number y such
that y? = 3.

Modify the argument in Theorem 2.4.7 to show that if @ > 0, then there exists a positive real
number z such that z2 = a.

Modify the argument in Theorem 2.4.7 to show that there exists a positive real number u such
that 1 = 2.

Complete the proof of the Density Theorem 2.4.8 by removing the assumption that x > 0.

If u > 0 is any real number and x < y, show that there exists a rational number r such that
x < ru <y. (Hence the set {ru: r € Q} is dense in R.)

Section 2.5 Intervals

The Order Relation on R determines a natural collection of subsets called ““‘intervals.”
The notations and terminology for these special sets will be familiar from earlier
courses. If a,b € R satisfy a < b, then the open interval determined by a and b is
the set

(a,0) ={x€eR:a<x<b}.

The points a and b are called the endpoints of the interval; however, the endpoints are not
included in an open interval. If both endpoints are adjoined to this open interval, then we
obtain the closed interval determined by a and b; namely, the set

[a,b] :={xeR:a<x<b}

The two half-open (or half-closed) intervals determined by a and b are [a, b), which
- includes the endpoint a, and (a, b], which includes the endpoint b.

Each of these four intervals is bounded and has length defined by b — a. If a = b, the
corresponding open interval is the empty set (a, @) = (), whereas the corresponding closed
interval is the singleton set [a,a] = {a}.

There are five types of unbounded intervals for which the symbols oo (or + oo) and —co
are used as notational convenience in place of the endpoints. The infinite open intervals are
the sets of the form

(a,00):={x€eR:x>a} and (—o0,b):={x€eR:x<b}.
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3.1 SEQUENCES AND THEIR LIMITS 61

If ¢ > 1, then ¢ = 1 + d,, for some d,, > 0. Hence by Bernoulli’s Inequality 2.1.13(c),
c=(1+d,)">1+nd, for neN.

Therefore we have ¢ — 1 > nd,, so that d, < (¢ — 1)/n. Consequently we have
1
" —1|=d, < (c—1)= for neN.
n

We now invoke Theorem 3.1.10 to infer that lim(c'/") = 1 when ¢ > 1.
Now suppose that 0 < ¢ < 1; then ¢ = 1/(1 + h,) for some h, > 0. Hence
Bernoulli’s Inequality implies that

1 & 1 2 1
(1+h)" — 1+nh, nhy,’

C =
from which it follows that 0 < %, < 1/nc for n € N. Therefore we have

h 1
0<1-— 1/":L<]”<_
¢ 1+ A, ’ ne

so that
1\ 1
|cl/”—l|<<—>— for neN.
c/n

We now apply Theorem 3.1.10 to infer that lim(c'/") = 1 when 0 < ¢ < 1.
(@ lim(n'/™) =1

Since n!/" > 1forn > 1, we can write n'/" = 1 + k,, for some k, > 0 when n > 1.
Hence n = (1 + k)" for n > 1. By the Binomial Theorem, if # > 1 we have

n=1+nk, +inn— ks +--->1+1inn- 1)ic

n?
whence it follows that

n—1>1in(n-1)k.

Hence k,z7 < 2/nforn > 1.1f ¢ > 01is given, it follows from the Archimedean Property that
there exists a natural number N, such that 2 /N, < &. It follows that if n > sup{2, N} then
2/n < ¢, whence

0<n/"—1=k,<2/n)?<e

Since ¢ > 0 is arbitrary, we deduce that lim(n'/") = 1.

Exercises for Section 3.1

1. The sequence (x,,) is defined by the following formulas for the nth term. Write the first five terms
in each case:

(@ xp:=1+(=1)", 0 x,:=(=1)"/n,

(©) xp:=

nn+1)’
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The first few terms of a sequence (x,,) are given below. Assuming that the “natural pattern”
indicated by these terms persists, give a formula for the nth term x,,.

(@ 5,7,911,..., (b) 1/2,-1/4,1/8,-1/16, .. .,

(© 1/2,2/3,3/4,4/5,..., (d 1,4,9,16,.. ..

List the first five terms of the following inductively defined sequences.
@ x;:= 1, Xnt1 = 3%, + L

(b) 1= 27 yrH»] ::%(yn—‘,_z/yn)a

©) z1:= I, Zy = 27 Zp4p = (Zr1+1 +Zn)/<2n+l = Zn):

(d s := 3, &= 3; Sp2 = Sp + Spa1-

For any b € R, prove that lim(b/n) = 0.

Use the definition of the limit of a sequence to establish the following limits.

n 2n
2 — li =2
(a) lim (nz ™ 1) 0, (b) lim <n T 1) ;

3n+ 3 n”—1 1
i — d) lim|———— ) ==
© lim (271 + ) 2° @ lim <2n2 -+ 3> 2
Show that

1 2n
i =0, i =3
(a) hm< T 7) 0, (b) lim (n =

©) hm(rl—\fg) —0,

Let x, := 1/In(n+ 1) forn € N.

(a) Use the definition of limit to show that lim(x,) = 0.

(b) Find a specific value of K(¢) as required in the definition of limit for each of (i)e=1/2,and
(ii) & = 1/10.

Prove that lim(x,) =0 if and only if lim(|x,|) = 0. Give an example to show that the

convergence of (|x,|) need not imply the convergence of (x,).

Show that if x,, > 0 for all # € N and lim(x,) = 0, then lim(/x,) = 0.

Prove that if lim(x,) = x and if x > 0, then there exists a natural number M such that X, > 0 for
all n > M.

1 1
Show that lim (— — ) = {J,
n o n

Show that lim(v/n? + 1 —n) = 0.
Show that lim(1/3") = 0.

Let b € R satisfy 0 < b < 1. Show that lim(nb") = 0. [Hint: Use the Binomial Theorem as in
Example 3.1.11(d).]

Show that 1im((2n)1/”) =1
Show that lim(n?/n!) = 0.
Show that lim(2"/n!) = 0. [Hint: If n > 3, then 0 < 2"/n! < 2(2)" 2]

If lim(x,) = x > 0, show that there exists a natural number K such that if 7 > K, then
230 0 L 2




