MATH2050A Mathematical Analysis I
 Suggested solution to HW 6

(1) Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $f([0,1]) \subset \mathbb{Q}$. Show that f is a constant function.

Solution. Suppose f is not a constant function. Then there exists $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)<f\left(x_{2}\right)$. By the density of irrational numbers, we can find $k \in \mathbb{R} \backslash \mathbb{Q}$ such that $f\left(x_{1}\right)<k<f\left(x_{2}\right)$. Since $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function, it follows from Bolzano's Intermediate Value Theorem that there exists $c \in[0,1]$ between x_{1} and x_{2} such that $f(c)=k$. This contradicts the assumption that $f([0,1]) \subset \mathbb{Q}$.
(2) Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ is a function given by $f(x)=\sup \left\{x^{2}, \cos x\right\}$. Show that there exists an absolute minimum point $x_{0} \in\left[0, \frac{\pi}{2}\right]$ for f. Moreover, show that x_{0} is the solution to $x^{2}=\cos x$.

Solution. Recall that $\sup \{a, b\}=\max \{a, b\}=\frac{a+b+|a-b|}{2}$. Since x^{2} and $\cos x$ are both continuous on $\left[0, \frac{\pi}{2}\right]$, it follows from Theorem 5.2.2 and 5.2.4 that f is also continuous on $\left[0, \frac{\pi}{2}\right]$. By the Maximum-Minimum Theorem, there exists an absolute minimum point $x_{0} \in\left[0, \frac{\pi}{2}\right]$ for f.
Observe that $x_{0} \neq 0, \frac{\pi}{2}$ since $f(0)=1, f\left(\frac{\pi}{2}\right)=\frac{\pi^{2}}{4}>f\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$.
Suppose $x_{0}^{2} \neq \cos x_{0}$. Then either $x_{0}^{2}>\cos x_{0}$ or $x_{0}^{2}<\cos x_{0}$.
Case 1: Suppose $x_{0}^{2}>\cos x_{0}$. Then, by the continuity of $x^{2}-\cos x$, we can find x_{1} such that $0<x_{1}<x_{0}$ and $x_{1}^{2}>\cos x_{1}$. Now, since x^{2} is increasing on $\left[0, \frac{\pi}{2}\right]$, we have

$$
f\left(x_{1}\right)=x_{1}^{2}<x_{0}^{2}=f\left(x_{0}\right) .
$$

This contradicts the fact that x_{0} is an absolute minimum point for f on $\left[0, \frac{\pi}{2}\right]$.
Case 2: Suppose $x_{0}^{2}<\cos x_{0}$. By the same argument in Case 1, we can find x_{2} such that $x_{0}<x_{2}<\frac{\pi}{2}$ and $x_{2}^{2}<\cos x_{2}$. Now, since $\cos x$ is decreasing on $\left[0, \frac{\pi}{2}\right]$, we have

$$
f\left(x_{2}\right)=\cos x_{2}<\cos x_{0}=f\left(x_{0}\right) .
$$

This again contradicts the fact that x_{0} is an absolute minimum point for f on $\left[0, \frac{\pi}{2}\right]$.
Therefore x_{0} is a solution to $x^{2}=\cos x$.
(3) Show that the function $f(x)=x^{-2}$ is uniformly continuous on $[1,+\infty)$ but is not on $(0,+\infty)$.

Solution. (i) Note that, for $x, u \geq 1$,

$$
\begin{aligned}
|f(x)-f(u)| & =\left|\frac{(x+u)(x-u)}{x^{2} u^{2}}\right| \leq \frac{|x|+|u|}{|x|^{2}|u|^{2}}|x-u|=\left(\frac{1}{|x||u|^{2}}+\frac{1}{|x|^{2}|u|}\right)|x-u| \\
& \leq 2|x-u|
\end{aligned}
$$

Let $\varepsilon>0$. Take $\delta=\varepsilon / 2$. Now, if $x, u \in[1,+\infty)$ and $|x-u|<\delta$, then

$$
|f(x)-f(u)| \leq 2|x-u|<2 \delta=\varepsilon
$$

Hence f is uniformly continuous on $[1,+\infty)$.
(ii) Let $\varepsilon_{0}=1$. Consider the sequences $\left\{x_{n}\right\}=\{1 / n\}$ and $\left\{u_{n}\right\}=\{1 /(n+1)\}$. Then $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ both lie in $(0,+\infty)$, and satisfy $\lim _{n \rightarrow+\infty}\left(u_{n}-x_{n}\right)=0$. However,

$$
f\left(u_{n}\right)-f\left(x_{n}\right)=(n+1)^{2}-n^{2}=2 n+1 \geq 1=\varepsilon_{0} \quad \text { for all } n \in \mathbb{N} .
$$

By Nonuniform Continuity Criteria, f is not uniformly continuous on $(0,+\infty)$.
(4) Suppose $f, g: A \rightarrow \mathbb{R}$ are uniformly continuous and bounded on A, show that $f g$ is also uniformly continuous. Is the same assertion true without the boundedness assumption? Justify your answer.

Solution. (i) Since f and g are bounded on A, there exists $M>0$, such that $|f|,|g| \leq M$ on A. Let $\varepsilon>0$. Since f and g are both uniformly continuous on A, there exists $\delta>0$ such that if $x, u \in A$ and $|x-u|<\delta$, then

$$
|f(x)-f(u)|<\frac{\varepsilon}{2 M} \quad \text { and } \quad|g(x)-g(u)|<\frac{\varepsilon}{2 M}
$$

Hence, if $x, u \in A$ and $|x-u|<\delta$, then

$$
\begin{aligned}
|f g(x)-f g(u)| & =|f(x) g(x)-f(x) g(u)+f(x) g(u)-f(u) g(u)| \\
& \leq|f(x) g(x)-f(x) g(u)|+|f(x) g(u)-f(u) g(u)| \\
& =|f(x)||g(x)-g(u)|+|g(u)||f(x)-f(u)| \\
& \leq M|g(x)-g(u)|+M|f(x)-f(u)| \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Therefore, $f g$ is uniformly continuous on A.
(ii) The same assertion is not true without the Boundedness assumption. For example, consider $f, g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=g(x)=x$.
Given any $\varepsilon>0$, if we choose $\delta=\varepsilon$, then whenever $x, u \in \mathbb{R}$ with $|x-u|<\delta$, we have

$$
|f(x)-f(u)|=|g(x)-g(u)|=|x-u|<\delta=\varepsilon .
$$

Hence, f and g are uniformly continuous on \mathbb{R}.
Consider the sequences $\left\{x_{n}\right\}=\{n\},\left\{u_{n}\right\}=\left\{n+\frac{1}{n}\right\}$. Then $\lim _{n \rightarrow+\infty}\left(u_{n}-x_{n}\right)=0$ but

$$
\left|f g\left(u_{n}\right)-f g\left(x_{n}\right)\right|=\left(n+\frac{1}{n}\right)^{2}-n^{2}=2+\frac{1}{n^{2}} \geq 2 \quad \text { for all } n \in \mathbb{N}
$$

By Nonuniform Continuity Criteria, $f g$ is not uniformly continuous on \mathbb{R}.
(5) Show that if f is continuous on $[0,+\infty)$ and is uniformly continuous on $[a,+\infty)$ for some $a>0$, then f is uniformly continuous on $[0,+\infty)$.

Solution. Let $\varepsilon>0$. Since f is uniformly continuous on $[a, \infty)$, there exists $\delta_{1}>0$ such that if $x, u \in[a, \infty)$ and $|x-u|<\delta_{1}$, then

$$
|f(x)-f(u)|<\varepsilon .
$$

Since f is continuous on $[0, \infty)$, it is continuous on $[0, a+1]$ and hence uniformly continuous on $[0, a+1]$ by Uniform Continuity Theorem 5.4.3. Then there exists $\delta_{2}>0$ such that if $x, u \in[0, a+1]$ and $|x-u|<\delta_{2}$, then

$$
|f(x)-f(u)|<\varepsilon .
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}, 1\right\}$. Suppose $x, u \in[0, \infty)$ and $|x-u|<\delta$. Then either $x, u \in$ $[a, \infty)$ and $|x-u|<\delta_{1}$; or $x, u \in[0, a+1]$ and $|x-u|<\delta_{2}$. In either case,

$$
|f(x)-f(u)|<\varepsilon .
$$

Hence f is uniformly continuous on $[0, \infty)$.

