
MATH2050A Mathematical Analysis I

Suggested solution to HW 6

(1) Suppose f : [0, 1]→ R is a continuous function such that f([0, 1]) ⊂ Q. Show that f
is a constant function.

Solution. Suppose f is not a constant function. Then there exists x1, x2 ∈ [0, 1] such
that f(x1) < f(x2). By the density of irrational numbers, we can find k ∈ R\Q such
that f(x1) < k < f(x2). Since f : [0, 1]→ R is a continuous function, it follows from
Bolzano’s Intermediate Value Theorem that there exists c ∈ [0, 1] between x1 and x2
such that f(c) = k. This contradicts the assumption that f([0, 1]) ⊂ Q.

(2) Let f : [0, π
2
]→ R is a function given by f(x) = sup{x2, cosx}. Show that there exists

an absolute minimum point x0 ∈ [0, π
2
] for f . Moreover, show that x0 is the solution

to x2 = cosx.

Solution. Recall that sup{a, b} = max{a, b} = a+b+|a−b|
2

. Since x2 and cosx are both
continuous on [0, π

2
], it follows from Theorem 5.2.2 and 5.2.4 that f is also continuous

on [0, π
2
]. By the Maximum-Minimum Theorem, there exists an absolute minimum

point x0 ∈ [0, π
2
] for f .

Observe that x0 6= 0, π
2

since f(0) = 1, f(π
2
) = π2

4
> f(π

4
) = 1√

2
.

Suppose x20 6= cosx0. Then either x20 > cosx0 or x20 < cosx0.

Case 1: Suppose x20 > cosx0. Then, by the continuity of x2 − cosx, we can find x1
such that 0 < x1 < x0 and x21 > cosx1. Now, since x2 is increasing on [0, π

2
], we have

f(x1) = x21 < x20 = f(x0).

This contradicts the fact that x0 is an absolute minimum point for f on [0, π
2
].

Case 2: Suppose x20 < cosx0. By the same argument in Case 1, we can find x2 such
that x0 < x2 <

π
2

and x22 < cosx2. Now, since cosx is decreasing on [0, π
2
], we have

f(x2) = cos x2 < cosx0 = f(x0).

This again contradicts the fact that x0 is an absolute minimum point for f on [0, π
2
].

Therefore x0 is a solution to x2 = cosx.

(3) Show that the function f(x) = x−2 is uniformly continuous on [1,+∞) but is not on
(0,+∞).

Solution. (i) Note that, for x, u ≥ 1,

|f(x)− f(u)| =
∣∣∣∣(x+ u)(x− u)

x2u2

∣∣∣∣ ≤ |x|+ |u||x|2|u|2
|x− u| =

(
1

|x||u|2
+

1

|x|2|u|

)
|x− u|

≤ 2|x− u|.

Let ε > 0. Take δ = ε/2. Now, if x, u ∈ [1,+∞) and |x− u| < δ, then

|f(x)− f(u)| ≤ 2|x− u| < 2δ = ε.

Hence f is uniformly continuous on [1,+∞).
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(ii) Let ε0 = 1. Consider the sequences {xn} = {1/n} and {un} = {1/(n+1)}. Then
{xn} and {un} both lie in (0,+∞), and satisfy lim

n→+∞
(un − xn) = 0. However,

f(un)− f(xn) = (n+ 1)2 − n2 = 2n+ 1 ≥ 1 = ε0 for all n ∈ N.

By Nonuniform Continuity Criteria, f is not uniformly continuous on (0,+∞).

(4) Suppose f, g : A → R are uniformly continuous and bounded on A, show that fg
is also uniformly continuous. Is the same assertion true without the boundedness
assumption? Justify your answer.

Solution. (i) Since f and g are bounded on A, there exists M > 0, such that
|f | , |g| ≤ M on A. Let ε > 0. Since f and g are both uniformly continuous on
A, there exists δ > 0 such that if x, u ∈ A and |x− u| < δ, then

|f(x)− f(u)| < ε

2M
and |g(x)− g(u)| < ε

2M
.

Hence, if x, u ∈ A and |x− u| < δ, then

|fg(x)− fg(u)| = |f(x)g(x)− f(x)g(u) + f(x)g(u)− f(u)g(u)|
≤ |f(x)g(x)− f(x)g(u)|+ |f(x)g(u)− f(u)g(u)|
= |f(x)| |g(x)− g(u)|+ |g(u)| |f(x)− f(u)|
≤M |g(x)− g(u)|+M |f(x)− f(u)|
< ε/2 + ε/2 = ε.

Therefore, fg is uniformly continuous on A.

(ii) The same assertion is not true without the Boundedness assumption. For ex-
ample, consider f, g : R→ R defined by f(x) = g(x) = x.

Given any ε > 0, if we choose δ = ε, then whenever x, u ∈ R with |x− u| < δ,
we have

|f(x)− f(u)| = |g(x)− g(u)| = |x− u| < δ = ε.

Hence, f and g are uniformly continuous on R.

Consider the sequences {xn} = {n}, {un} = {n+ 1
n
}. Then lim

n→+∞
(un − xn) = 0

but

|fg(un)− fg(xn)| =
(
n+

1

n

)2

− n2 = 2 +
1

n2
≥ 2 for all n ∈ N.

By Nonuniform Continuity Criteria, fg is not uniformly continuous on R.
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(5) Show that if f is continuous on [0,+∞) and is uniformly continuous on [a,+∞) for
some a > 0, then f is uniformly continuous on [0,+∞).

Solution. Let ε > 0. Since f is uniformly continuous on [a,∞), there exists δ1 > 0
such that if x, u ∈ [a,∞) and |x− u| < δ1, then

|f(x)− f(u)| < ε.

Since f is continuous on [0,∞), it is continuous on [0, a + 1] and hence uniformly
continuous on [0, a + 1] by Uniform Continuity Theorem 5.4.3. Then there exists
δ2 > 0 such that if x, u ∈ [0, a+ 1] and |x− u| < δ2, then

|f(x)− f(u)| < ε.

Let δ = min{δ1, δ2, 1}. Suppose x, u ∈ [0,∞) and |x− u| < δ. Then either x, u ∈
[a,∞) and |x− u| < δ1; or x, u ∈ [0, a+ 1] and |x− u| < δ2. In either case,

|f(x)− f(u)| < ε.

Hence f is uniformly continuous on [0,∞).


