MATH2050A Mathematical Analysis I Suggested solution to HW 5

(1) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and $S=\{x \in \mathbb{R}: f(x)=0\}$. Show that S is closed in the sense that if $x_{n} \in S$ and $x_{n} \rightarrow x$, then $x \in S$.

Solution. Let $\left(x_{n}\right)$ be a sequence in S such that $x_{n} \rightarrow x$. For all $n \in \mathbb{N}, x_{n} \in$ S implies that $f\left(x_{n}\right)=0$. By the Sequential Criterion for Continuity, since $\left(x_{n}\right)$ converges to x, we must have $\left(f\left(x_{n}\right)\right)$ converges to $f(x)$. Therefore $f(x)=0$, that is $x \in S$.
(2) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that

$$
f\left(m 2^{-n}\right)=m 2^{-m}
$$

for all $m \in \mathbb{Z}, n \in \mathbb{N}$. Show that $f(x)=x$ for all $x \in \mathbb{R}$.
Solution. We first show that the set $A:=\left\{m 2^{-n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}$ is dense in \mathbb{R}, that is, given any $x, y \in \mathbb{R}$ with $x<y$, there exists $a \in A$ such that $x<a<y$.
Since $y-x>0$, it follows from Corollary 2.4.5 that there exists $n \in \mathbb{N}$ such that $1 / n<y-x$. As $2^{n} \geq n$, we have $2^{-n}<y-x$ and so $2^{n} y-2^{n} x>1$. Then there exists $m \in \mathbb{Z}$ such that $2^{n} x<m<2^{n} y$. Thus, the number $a:=m 2^{-n} \in A$ satisfies $x<a<y$.
Next, we show that $f(x)=x$ for all $x \in \mathbb{R}$. Let $x \in \mathbb{R}$. By the density of A in \mathbb{R}, for any $n \in \mathbb{N}$, there exists $x_{n} \in A$ such that

$$
x<x_{n}<x+\frac{1}{n} .
$$

Clearly, $x_{n} \neq x$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} x_{n}=x$. Since f is continuous at x, it follows from the Sequential Criterion for Continuity that

$$
f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n}=x .
$$

(3) Using the ε, δ terminology to show that
(a)

$$
\lim _{x \rightarrow 2} \sqrt{\frac{2 x+1}{x+3}}=1
$$

(b)

$$
\lim _{x \rightarrow 1} \frac{x^{2}-3 x}{x+3}=\frac{-1}{2}
$$

Solution. (a) First, note that for any $x, y \geq 0$,

$$
|\sqrt{x}-\sqrt{y}|^{2} \leq|\sqrt{x}-\sqrt{y}||\sqrt{x}+\sqrt{y}|=|x-y| .
$$

Thus, for $x>0$, we have

$$
\left|\sqrt{\frac{2 x+1}{x+3}}-1\right|^{2} \leq\left|\frac{2 x+1}{x+3}-1\right|=\frac{|x-2|}{|x+3|}
$$

Let $\varepsilon>0$. Take $\delta=\min \left\{\varepsilon^{2}, 1\right\}$. Now if $0<|x-2|<\delta$, then

$$
|x+3|=|(x-2)+5| \geq 5-|x-2| \geq 5-1=4
$$

and so

$$
\left|\sqrt{\frac{2 x+1}{x+3}}-1\right| \leq \sqrt{\frac{|x-2|}{|x+3|}} \leq \sqrt{\frac{\varepsilon^{2}}{4}}=\frac{\varepsilon}{2}<\varepsilon
$$

Therefore $\lim _{x \rightarrow 2} \sqrt{\frac{2 x+1}{x+3}}=1$.
(b) For $x \neq-3$,

$$
\left|\frac{x^{2}-3 x}{x+3}-\left(\frac{-1}{2}\right)\right|=\left|\frac{2 x^{2}-5 x+3}{2(x+3)}\right|=\frac{|2 x-3|}{2|x+3|}|x-1| .
$$

Note that, if $|x-1|<1$, then

$$
|2 x-3|=|2(x-1)-1| \leq 2|x-1|+1<3
$$

and

$$
|x+3|=|(x-1)+4| \geq 4-|x-1|>3
$$

Let $\varepsilon>0$. Take $\delta=\min \{\varepsilon, 1\}$. Now if $0<|x-1|<\delta$, then

$$
\left|\frac{x^{2}-3 x}{x+3}-\left(\frac{-1}{2}\right)\right|=\frac{|2 x-3|}{2|x+3|}|x-1|<\frac{3}{2 \cdot 3} \delta \leq \varepsilon / 2<\varepsilon .
$$

Therefore $\lim _{x \rightarrow 1} \frac{x^{2}-3 x}{x+3}=\frac{-1}{2}$.
(4) Show that the following limit does not exist:

$$
\lim _{x \rightarrow 0} \sin \left(\frac{1}{x^{2}}\right)
$$

Solution. Denote $f(x)=\sin \left(\frac{1}{x^{2}}\right)$. Let

$$
x_{n}:=\frac{1}{\sqrt{2 n \pi}} \text { and } y_{n}:=\frac{1}{\sqrt{2 n \pi+\pi / 2}} \quad \text { for } n \in \mathbb{N} .
$$

Then $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are non-zero sequences such that

$$
\lim _{n \rightarrow \infty}\left(x_{n}\right)=\lim _{n \rightarrow \infty}\left(y_{n}\right)=0 .
$$

However, $f\left(x_{n}\right)=\sin (2 n \pi)=0$ for all $n \in \mathbb{N}$, so that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$; while $f\left(y_{n}\right)=$ $\sin (2 n \pi+\pi / 2)=1$ for all $n \in \mathbb{N}$, so that $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=1$. In view of the Sequential Criterion for Limits, $\lim _{x \rightarrow 0} f(x)$ does not exist.
(5) If $f: A \rightarrow \mathbb{R}_{\geq 0}$ and c is a cluster point of A so that f has a limit $L \geq 0$ at c. Show that \sqrt{f} has limit \sqrt{L} at c.

Solution. Note that for any $x, y \geq 0$,

$$
|\sqrt{x}-\sqrt{y}|^{2} \leq|\sqrt{x}-\sqrt{y}||\sqrt{x}+\sqrt{y}|=|x-y| .
$$

Let $\varepsilon>0$. Since $\lim _{x \rightarrow c} f(x)=L$, there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon^{2} \quad \text { whenever } x \in A \text { with } 0<|x-c|<\delta
$$

Now, if $x \in A$ and $0<|x-c|<\delta$, then

$$
|\sqrt{f(x)}-\sqrt{L}| \leq \sqrt{|f(x)-L|}<\sqrt{\varepsilon^{2}}=\varepsilon
$$

Hence $\lim _{x \rightarrow c} \sqrt{f}(x)=\sqrt{L}$.

