MATH2050A Mathematical Analysis I
 Suggested solution to HW 4

(1) Let $x_{1}<x_{2}$ be two given real numbers. Define the sequence inductively by

$$
x_{n}=\frac{1}{3} x_{n-1}+\frac{2}{3} x_{n-2}
$$

for all $n>2$. Show that $\left\{x_{n}\right\}$ is convergent and find the limit.
Solution. Note that

$$
x_{n+2}-x_{n+1}=\frac{1}{3} x_{n+1}+\frac{2}{3} x_{n}-x_{n+1}=-\frac{2}{3}\left(x_{n+1}-x_{n}\right) \quad \text { for } n \in \mathbb{N} \text {. }
$$

Thus

$$
x_{n+2}-x_{n+1}=-\frac{2}{3}\left(x_{n+1}-x_{n}\right)=\left(-\frac{2}{3}\right)^{2}\left(x_{n}-x_{n-1}\right)=\cdots=\left(-\frac{2}{3}\right)^{n}\left(x_{2}-x_{1}\right) .
$$

Summing up the expression, we have

$$
\begin{aligned}
\sum_{k=0}^{n}\left(x_{k+2}-x_{k+1}\right) & =\left(x_{2}-x_{1}\right) \sum_{k=0}^{n}\left(-\frac{2}{3}\right)^{k} \\
x_{n+2}-x_{1} & =\left(x_{2}-x_{1}\right) \frac{1-\left(-\frac{2}{3}\right)^{n+1}}{1-\left(-\frac{2}{3}\right)} \\
x_{n+2} & =x_{1}+\frac{3}{5}\left(x_{2}-x_{1}\right)\left[1-\left(-\frac{2}{3}\right)^{n+1}\right] .
\end{aligned}
$$

Since $\lim \left(-\frac{2}{3}\right)^{n+1}=0$, we have $\lim \left(x_{n}\right)=x_{1}+\frac{3}{5}\left(x_{2}-x_{1}\right)=\frac{2}{3} x_{1}+\frac{3}{5} x_{2}$.
(2) If $x_{1}=2$ and $x_{n+1}=2+\frac{1}{x_{n}}$ for all $n \geq 1$, show that $\left\{x_{n}\right\}$ is a contractive sequence, i.e. there exists $C \in[0,1)$ such that for all $n \geq 2$,

$$
\left|x_{n+1}-x_{n}\right| \leq C\left|x_{n}-x_{n-1}\right| .
$$

Show that $\left\{x_{n}\right\}$ is convergent and find the limit.
Solution. It is easy to check that $x_{n} \geq 2$ for all $n \in \mathbb{N}$ by induction. Then, for all $n \geq 2$,

$$
\begin{aligned}
\left|x_{n+1}-x_{n}\right| & =\left|\left(2+\frac{1}{x_{n}}\right)-\left(2+\frac{1}{x_{n-1}}\right)\right| \\
& =\frac{1}{x_{n} x_{n-1}}\left|x_{n}-x_{n-1}\right| \\
& \leq \frac{1}{4}\left|x_{n}-x_{n-1}\right| .
\end{aligned}
$$

So $\left\{x_{n}\right\}$ is a contractive sequence, and hence is convergent by Theorem 3.5.8. Suppose $x=\lim \left(x_{n}\right)$. Then we have $x=2+\frac{1}{x}$, so that $x^{2}-2 x-1=0$. Solving the equation, we obtain $x=1+\sqrt{2}$ as the other root $1-\sqrt{2}$, which is less than 2 , is rejected.
(3) Find an example of sequence $\left\{x_{n}\right\}$ such that it is not a Cauchy sequence but for any fixed $p \in \mathbb{N}, x_{n+p}-x_{n} \rightarrow 0$ as $n \rightarrow+\infty$.

Solution. Consider the sequence $\left(x_{n}\right)$ defined by $x_{n}:=\sum_{k=1}^{n} \frac{1}{k}$ for $n \in \mathbb{N}$.
Then $\left(x_{n}\right)$ is not a Cauchy sequence since for any $n \in \mathbb{N}$,

$$
\left|x_{2 n}-x_{n}\right|=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} \geq \frac{1}{2 n}+\frac{1}{2 n}+\cdots+\frac{1}{2 n}=\frac{1}{2} .
$$

On the other hand, for any fixed $p \in \mathbb{N}$,

$$
\left|x_{n+p}-x_{n}\right|=\frac{1}{n+1}+\cdots+\frac{1}{n+p} \leq \frac{p}{n+1} \rightarrow 0 \quad \text { as } n \rightarrow+\infty
$$

and therefore, $\lim \left(x_{n+p}-x_{n}\right)=0$ by Squeeze Theorem.
(4) Show that if $x_{n}>0$ for all $n \in \mathbb{N}$, then $x_{n} \rightarrow 0$ as $n \rightarrow+\infty$ if and only if $x_{n}^{-1} \rightarrow+\infty$ as $n \rightarrow+\infty$.

Solution. Suppose $\lim \left(x_{n}\right)=0$. Then for any $M>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $\left|x_{n}-0\right|<1 / M$, and hence $x_{n}^{-1}=\left|x_{n}-0\right|^{-1}>M$. Therefore, $x_{n}^{-1} \rightarrow+\infty$ as $n \rightarrow+\infty$.
On the other hand, suppose $x_{n}^{-1} \rightarrow+\infty$ as $n \rightarrow+\infty$. Then for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $x_{n}^{-1}>1 / \varepsilon$, and hence $\left|x_{n}-0\right|=x_{n}<\varepsilon$. Therefore, $\lim \left(x_{n}\right)=0$.

