MATH2050A Mathematical Analysis I Suggested solution to HW 2

(1) Let S be a non-empty subset of \mathbb{R} . Show that S is bounded if and only if there exists a closed and bounded interval I such that $S \subseteq I$.

Solution. Suppose S is bounded. Then there exist $a, b \in \mathbb{R}$ such that

$$a \le x \le b$$
 for all $s \in S$.

Hence $S \subseteq [a, b]$.

Suppose there exists a closed and bounded interval I such that $S \subseteq I$. Let a, b be the left endpoint and right endpoint of I respectively. Then, for any $s \in S$, we have $a \leq s \leq b$. So S is bounded.

(2) Let $f, g: S \to \mathbb{R}$ be two real-valued functions. Suppose that $\sup\{f(x) + g(x) : x \in S\}$, $\sup\{f(x) : x \in S\}$ and $\sup\{g(x) : x \in S\}$ exist in \mathbb{R} . Show that

$$\sup\{f(x) + g(x) : x \in S\} \le \sup\{f(x) : x \in S\} + \sup\{g(x) : x \in S\}.$$

Show that in general \leq cannot be replaced by = by providing a counter-example.

Solution. Denote $a := \sup\{f(x) : x \in S\}$ and $b := \sup\{g(x) : x \in S\}$. For any $x \in S$, we have $f(x) \le a$ and $g(x) \le b$, and hence $f(x) + g(x) \le a + b$. So a + b is an upper bound of the set $\{f(x) + g(x) : x \in S\}$, which implies that

$$\sup\{f(x) + g(x) : x \in S\} \le \sup\{f(x) : x \in S\} + \sup\{g(x) : x \in S\}.$$

Consider S = [-1, 1] and f(x) = -g(x) = x for any $x \in S$. Then f(x) + g(x) = 0 for any $x \in S$, and so $\sup\{f(x) + g(x) : x \in S\} = 0$. However, $\sup\{f(x) : x \in S\} = \sup\{g(x) : x \in S\} = 1$, and thus $\sup\{f(x) : x \in S\} + \sup\{g(x) : x \in S\} = 2$. \Box

- (3) (a) Let $x_1 = 1$ and $x_{n+1} = x_n + \frac{1}{x_n}$ for all $n \in \mathbb{N}$. Determine whether $\{x_n\}$ is convergent or not.
 - (b) Let $x_1 = 1$ and $x_{n+1} = \sqrt{2x_n}$ for all $n \in \mathbb{N}$, show that $\{x_n\}$ is convergent.
 - **Solution.** (a) Since $x_1 > 0$ and $x_{n+1} = x_n + \frac{1}{x_n}$ for $n \in \mathbb{N}$, it follows easily from induction that $x_n > 0$ for all $n \in \mathbb{N}$. Thus

$$x_{n+1}x_n = x_n^2 + 1$$
 for all $n \in \mathbb{N}$.

Suppose $\{x_n\}$ is convergent and the limit is $x \in \mathbb{R}$. By letting $n \to \infty$ in the above equation, we have $x^2 = x^2 + 1$, and hence 0 = 1, which is absurd. Therefore, $\{x_n\}$ must be divergent.

(b) Let P(n) be the statement that $x_n \leq 2$ and $x_{n+1} \geq x_n$. Clearly P(1) is true since $x_1 = 1 < \sqrt{2} = x_2$. Suppose P(n) is true. Then

$$x_{n+1} = \sqrt{2x_n} \le \sqrt{2 \cdot 2} = 2,$$

and

$$x_{n+2} = \sqrt{2x_{n+1}} \ge \sqrt{2x_n} = x_{n+1}.$$

So P(n + 1) is true. By Mathematical Induction, P(n) is true for all $n \in \mathbb{N}$. Since $\{x_n\}$ is increasing and bounded above, it follows from Monotone Convergence Theorem that $\{x_n\}$ is convergent.

By letting $x = \lim(x_n)$ and solving the equation $x^2 = 2x$, we find that x = 2 since x = 0 is impossible $(x_n \ge x_1 = 1 \text{ for all } n \in \mathbb{N}.)$

(4) (a) Show that
$$\left\{\frac{n+3}{n^3-2n+4}\right\}_{n=1}^{\infty}$$
 is convergent.
(b) Show that $\left\{(5n^6)^{\frac{1}{n}}\right\}_{n=1}^{\infty}$ is convergent.

Solution. (a) For $n \in \mathbb{N}$, write

$$\frac{n+3}{n^3-2n+4} = \frac{\frac{1}{n^2} + \frac{3}{n^3}}{1 - \frac{2}{n} + \frac{4}{n^3}}.$$

By Theorem 3.2.3(a), we have

$$\lim\left(\frac{1}{n^2} + \frac{3}{n^3}\right) = 0 + 0 = 0,$$

and

$$\lim\left(1 - \frac{2}{n} + \frac{4}{n^3}\right) = 1 - 0 + 0 = 1 \neq 0.$$

So, by Theorem 3.2.3(b), we have

$$\lim\left(\frac{\frac{1}{n^2} + \frac{3}{n^3}}{1 - \frac{2}{n} + \frac{4}{n^3}}\right) = \frac{0}{1} = 0.$$

Therefore, $\left\{\frac{n+3}{n^3-2n+4}\right\}_{n=1}^{\infty}$ converges to 0.

As a demonstration, we will also show the convergence of the sequence by definition of limit.

Note that, for $n \ge 2$, we have $n^3 - 2n \ge \frac{1}{2}n^3$ and hence

$$\left|\frac{n+3}{n^3-2n+4}-0\right| = \frac{n+3}{n^3-2n+4} \le \frac{n+3}{\frac{1}{2}n^3+4} \le \frac{n+3n}{\frac{1}{2}n^3} = \frac{8}{n^2} \le \frac{8}{n}.$$

Let $\varepsilon > 0$. By Archimedean property, there is $N \in \mathbb{N}$ such that $N > \max\{2, \frac{8}{\varepsilon}\}$. Now, for $n \ge N$, we have

$$\left|\frac{n+3}{n^3-2n+4}-0\right| \le \frac{8}{n} \le \frac{8}{N} < \varepsilon.$$

(b) For $n \in \mathbb{N}$, write

$$(5n^6)^{\frac{1}{n}} = 5^{\frac{1}{n}} \cdot \left(n^{\frac{1}{n}}\right)^6.$$

By Examples 3.1.11, we have $\lim(5^{\frac{1}{n}}) = 1$ and $\lim(n^{\frac{1}{n}}) = 1$. So, by Theorem 3.2.3(a), we have

$$\lim\left(5^{\frac{1}{n}} \cdot \left(n^{\frac{1}{n}}\right)^{6}\right) = 1 \cdot (1)^{6} = 1.$$

Therefore, $\left\{ (5n^6)^{\frac{1}{n}} \right\}_{n=1}^{\infty}$ converges to 1.

Again we will also show the convergence of the sequence by definition of limit. Let $x_n = (5n^6)^{\frac{1}{n}} - 1 \ge 0$ for $n \in \mathbb{N}$. Then, for $n \ge 12$, we have

$$5n^{6} = (1+x_{n})^{n} = \sum_{k=0}^{n} C_{k}^{n} x_{n}^{k} \ge C_{7}^{n} x_{n}^{7} = \frac{n(n-1)\cdots(n-6)}{7!} x_{n}^{7} \ge \frac{(n/2)^{7}}{7!} x_{n}^{7} \ge \frac{(n/2)^{7}}{7!} x_{n}^{7} \ge \frac{n(n-1)\cdots(n-6)}{7!} x_{n}^{7} \ge \frac{(n/2)^{7}}{7!} x_{n}^{7} = \frac{(n/2)^{7}}{7$$

and hence

$$0 \le x_n^7 \le \frac{5 \cdot 7! \cdot 2^7}{n}$$

Let $\varepsilon > 0$. By Archimedean property, there is $N \in \mathbb{N}$ such that $N > \max\{12, \frac{5 \cdot 7! \cdot 2^7}{\varepsilon^7}\}$. Now, for $n \ge N$, we have

$$\left| (5n^6)^{\frac{1}{n}} - 1 \right| = x_n \le \sqrt[7]{\frac{5 \cdot 7! \cdot 2^7}{n}} \le \sqrt[7]{\frac{5 \cdot 7! \cdot 2^7}{N}} < \varepsilon.$$