MATH2050A Mathematical Analysis I Suggested solution to HW 1

(1) Using the Axioms to show that for all $a, b \in \mathbb{R}$,

$$
(-a)^{2}=a^{2} \quad \text { and } \quad(a+(-b))^{2}=a^{2}+(-2 a b)+b^{2} .
$$

Solution. First we show that if $a+b=0$, then $b=-a(*)$. Indeed,

$$
\begin{align*}
b & =b+0 \tag{byA3}\\
& =b+(a+(-a)) \tag{byA4}\\
& =(a+b)+(-a) \tag{byA1,A2}\\
& =0+(-a) \\
& =-a
\end{align*}
$$

(by assumption)
(by A3).

Thus, we have $-a=(-1) a(* *)$ because

$$
\begin{align*}
a+(-1) a & =1 \cdot a+(-1) a \tag{byM3}\\
& =(1+(-1)) \cdot a \tag{byD}\\
& =0 \cdot a \tag{byA4}\\
& =a \cdot 0 \\
& =0
\end{align*}
$$

(by M1)
(by Theorem 2.1.2(c)).
Hence, to show that $(-a)^{2}=a^{2}$, it suffices to show that $(-a)^{2}+\left(-a^{2}\right)=0$. Now

$$
\begin{align*}
(-a)^{2}+\left(-a^{2}\right) & =(-a)^{2}+(-1) a^{2} \tag{**}\\
& =(-a)^{2}+((-1) a) a \\
& =(-a)^{2}+(-a) a \\
& =(-a)(-a+a) \\
& =(-a) \cdot 0 \\
& =0
\end{align*}
$$

(by M1, M2)
(by (**))
(by D)
(by A4)
(by Theorem 2.1.2(c)).

For the second equality,

$$
\begin{array}{rlrl}
(a+(-b))^{2} & =a(a+(-b))+(-b)(a+(-b) & (\text { by } \mathrm{D}) \\
& =a^{2}+a(-b)+(-b) a+(-b)^{2} & (\text { by } \mathrm{D}) \\
& =a^{2}+a(-b)+a(-b)+b^{2} & & (\text { by }(* *)) \\
& =a^{2}+a((-1) b)+a((-1) b)+b^{2} & (\text { by M1, first equality) } \tag{**}\\
& =a^{2}+(-1)(a b)+(-1)(a b)+b^{2} & (\text { by } 1) \\
& =a^{2}+(-1)(2 a b)+b^{2} & & (\text { by }(* *)) .
\end{array}
$$

(2) Show that for all $n \in \mathbb{N}$,

$$
(n, n+1) \cap \mathbb{N}=\emptyset
$$

Show further that if $m, n \in \mathbb{Z}$ such that $m<n$, then $m+1 \leq n$.
Solution. Suppose on the contrary that for some $n_{0} \in \mathbb{N},\left(n_{0}, n_{0}+1\right) \cap \mathbb{N} \neq \emptyset$. Then $S:=\left\{n \in \mathbb{N}: n_{0}<n<n_{0}+1\right\}$ is a nonempty subset of \mathbb{N}. By the Well-Ordering Property of \mathbb{N}, S has a least element m. Now, $n_{0}<m<n_{0}+1$, which implies that $0<m-n_{0}<1$ and so

$$
0<\left(m-n_{0}\right)^{2}<m-n_{0}<1 .
$$

Thus $\left(m-n_{0}\right)^{2}+n_{0}$ is a natural number that satisfies

$$
n_{0}<\left(m-n_{0}\right)^{2}+n_{0}<m<n_{0}+1,
$$

contradicting the fact m is the least element of S.
Suppose there exist $m, n \in \mathbb{Z}$ such that $m<n$ but $m+1>n$. Then $n-m \in \mathbb{N}$ and satisfies $0<n-m<1$. This contradicts the result above.
(3) Suppose S is a non-empty bounded subset in \mathbb{R}. Is $\sup S$ necessarily inside S ? Justify your answer.

Solution. Not true. For example $S:=[0,1)$ is a non-empty bounded subset of \mathbb{R} but $\sup S=1 \notin S$. We will check that $\sup S=1$.
Clearly S is bounded above by 1 . Let $0<\varepsilon<1$. Then $0<1-\varepsilon<1-\varepsilon / 2<1$. So $1-\varepsilon$ is not an upper bound of S because $1-\varepsilon / 2 \in S$. Therefore $\sup S=1$.
(4) Show that if A, B are bounded subsets of \mathbb{R}, then

$$
\sup (A+B)=\sup A+\sup B, \quad \text { and } \quad \inf (A+B)=\inf A+\inf B
$$

where $A+B=\{a+b: a \in A, b \in B\}$.
Solution. We further assume that A and B are non-empty. Otherwise, the corresponding suprema and infima do not exist.
We will only prove $\sup (A+B)=\sup A+\sup B$ as the other can be proved similarly.
By the Completeness Axiom of \mathbb{R}, both $\sup A$ and $\sup B$ exist. It is clear that $\sup A+$ $\sup B$ is an upper bound of $A+B$. Indeed, for any $a \in A, b \in B$, we have $a \leq \sup A$, $b \leq \sup B$ and hence $a+b \leq \sup A+\sup B$.
Next we show that $\sup A+\sup B$ is the least upper bound of $A+B$. Let $\varepsilon>0$. By Lemma 2.3.4, there are $a_{0} \in A$ and $b_{0} \in B$ such that $a_{0}>\sup A-\frac{\varepsilon}{2}$ and $b_{0}>\sup B-\frac{\varepsilon}{2}$. Hence $a_{0}+b_{0}>\sup A+\sup B-\varepsilon$. By Lemma 2.3.4 again, we have $\sup (A+B)=\sup A+\sup B$.
(5) Show that $2^{n} \geq n+1$ for all $n \in \mathbb{N}$. Show further that for any $x>0$, there is $n \in \mathbb{N}$ such that $\frac{1}{2^{n}}<x$.

Solution. We will prove the first assertion by induction. The inequality is true if $n=1$. If we assume that $2^{k} \geq k+1$, then $2^{k+1} \geq 2(k+1) \geq k+2$. Thus, if the inequality is true for k, then it also holds for $k+1$. Therefore, Mathematical Induction implies that the inequality is true for all $n \in \mathbb{N}$.
If $x>0$, then the Archimedean Property implies that there exists $n \in \mathbb{N}$ such that $n \geq \frac{1}{x}$. Hence, by the inequality above, the same $n \in \mathbb{N}$ satisfies

$$
\frac{1}{2^{n}} \leq \frac{1}{n+1}<\frac{1}{n} \leq x
$$

(6) Show by using completeness that there is $x \in \mathbb{R} \backslash \mathbb{Q}$ so that $x>0$ and $x^{3}=2$.

Solution. First, we will show that there is $x \in \mathbb{R}$ such that $x>0$ and $x^{3}=2$. Let $S=\left\{s \in \mathbb{R}: s^{3}<2\right\}$. Then $1 \in S$ and S is bounded above by 2 . By the Completeness Axiom of $\mathbb{R}, x:=\sup S$ exists. Note $x \geq 1>0$.
We will make use of the following elementary inequality: if $0 \leq a \leq b$, then

$$
b^{n}-a^{n}=(b-a)\left(b^{n-1}+b^{n-2} a+\cdots+a^{n-1}\right) \leq(b-a) n b^{n-1} .
$$

Suppose $x^{3}<2$. Take $\varepsilon=\frac{1}{2} \min \left\{\frac{2-x^{3}}{3(x+1)^{2}}, 1\right\}>0$. Then

$$
(x+\varepsilon)^{3}-x^{3} \leq 3 \varepsilon(x+\varepsilon)^{2}<\frac{(x+\varepsilon)^{2}}{(x+1)^{2}}\left(2-x^{3}\right) \leq 2-x^{3}
$$

and so $(x+\varepsilon)^{3}<2$. Since $x<x+\varepsilon$, this contradicts the fact that $x=\sup S$.
Suppose $x^{3}>2$. Take $\varepsilon=\frac{x^{3}-2}{6 x^{2}}>0$. Then

$$
x^{3}-(x-\varepsilon)^{3} \leq 3 \varepsilon x^{2}<x^{3}-2
$$

and so $(x-\varepsilon)^{3}>2$. Now $x-\varepsilon$ is an upper bound of S since $s>x-\varepsilon \Longrightarrow s^{3}>$ $(x-\varepsilon)^{3}>2 \Longrightarrow s \notin S$. Again this contradicts the fact that $x=\sup S$.
Therefore, we must have $x^{3}=2$. It remains to show that such x is irrational. Suppose x is rational and $x=p / q$, where p, q are positive integers that are relatively prime.
Then $p^{3}=2 q^{3}$. This implies that p^{3} is even, and so is p. Therefore, since p and q do not have 2 as a common factor, then q must be odd.
Since p is even, then $p=2 m$ for some $m \in \mathbb{N}$, and hence $4 m^{3}=q^{3}$. This implies that q^{3} is even, and so is q.
Since the hypothesis $x \in \mathbb{Q}$ leads to the contradictory conclusion that q is both odd and even, it must be false.

