
MATH2050A Mathematical Analysis I

Suggested solution to HW 1

(1) Using the Axioms to show that for all a, b ∈ R,

(−a)2 = a2 and (a + (−b))2 = a2 + (−2ab) + b2.

Solution. First we show that if a + b = 0, then b = −a (∗). Indeed,

b = b + 0 (by A3)

= b + (a + (−a)) (by A4)

= (a + b) + (−a) (by A1, A2)

= 0 + (−a) (by assumption)

= −a (by A3).

Thus, we have −a = (−1)a (∗∗) because

a + (−1)a = 1 · a + (−1)a (by M3)

= (1 + (−1)) · a (by D)

= 0 · a (by A4)

= a · 0 (by M1)

= 0 (by Theorem 2.1.2(c)).

Hence, to show that (−a)2 = a2, it suffices to show that (−a)2 + (−a2) = 0. Now

(−a)2 + (−a2) = (−a)2 + (−1)a2 (by (∗∗))
= (−a)2 + ((−1)a)a (by M1, M2)

= (−a)2 + (−a)a (by (∗∗))
= (−a)(−a + a) (by D)

= (−a) · 0 (by A4)

= 0 (by Theorem 2.1.2(c)).

For the second equality,

(a + (−b))2 = a(a + (−b)) + (−b)(a + (−b) (by D)

= a2 + a(−b) + (−b)a + (−b)2 (by D)

= a2 + a(−b) + a(−b) + b2 (by M1, first equality)

= a2 + a((−1)b) + a((−1)b) + b2 (by (∗∗))
= a2 + (−1)(ab) + (−1)(ab) + b2 (by M1, M2)

= a2 + (−1)(2ab) + b2 (by D)

= a2 + (−2ab) + b2 (by (∗∗)).



Mathematical Analysis I 2

(2) Show that for all n ∈ N,
(n, n + 1) ∩ N = ∅.

Show further that if m,n ∈ Z such that m < n, then m + 1 ≤ n.

Solution. Suppose on the contrary that for some n0 ∈ N, (n0, n0 + 1)∩N 6= ∅. Then
S := {n ∈ N : n0 < n < n0 + 1} is a nonempty subset of N. By the Well-Ordering
Property of N, S has a least element m. Now, n0 < m < n0 + 1, which implies that
0 < m− n0 < 1 and so

0 < (m− n0)
2 < m− n0 < 1.

Thus (m− n0)
2 + n0 is a natural number that satisfies

n0 < (m− n0)
2 + n0 < m < n0 + 1,

contradicting the fact m is the least element of S.

Suppose there exist m,n ∈ Z such that m < n but m + 1 > n. Then n−m ∈ N and
satisfies 0 < n−m < 1. This contradicts the result above.

(3) Suppose S is a non-empty bounded subset in R. Is supS necessarily inside S? Justify
your answer.

Solution. Not true. For example S := [0, 1) is a non-empty bounded subset of R but
supS = 1 6∈ S. We will check that supS = 1.

Clearly S is bounded above by 1. Let 0 < ε < 1. Then 0 < 1− ε < 1− ε/2 < 1. So
1− ε is not an upper bound of S because 1− ε/2 ∈ S. Therefore supS = 1.

(4) Show that if A,B are bounded subsets of R, then

sup(A + B) = supA + supB, and inf(A + B) = inf A + inf B

where A + B = {a + b : a ∈ A, b ∈ B}.

Solution. We further assume that A and B are non-empty. Otherwise, the corre-
sponding suprema and infima do not exist.

We will only prove sup(A+B) = supA+ supB as the other can be proved similarly.

By the Completeness Axiom of R, both supA and supB exist. It is clear that supA+
supB is an upper bound of A+B. Indeed, for any a ∈ A, b ∈ B, we have a ≤ supA,
b ≤ supB and hence a + b ≤ supA + supB.

Next we show that supA + supB is the least upper bound of A + B. Let ε > 0.
By Lemma 2.3.4, there are a0 ∈ A and b0 ∈ B such that a0 > supA − ε

2
and

b0 > supB − ε
2
. Hence a0 + b0 > supA + supB − ε. By Lemma 2.3.4 again, we have

sup(A + B) = supA + supB.

(5) Show that 2n ≥ n + 1 for all n ∈ N. Show further that for any x > 0, there is n ∈ N
such that 1

2n
< x.
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Solution. We will prove the first assertion by induction. The inequality is true if
n = 1. If we assume that 2k ≥ k + 1, then 2k+1 ≥ 2(k + 1) ≥ k + 2. Thus, if the
inequality is true for k, then it also holds for k+1. Therefore, Mathematical Induction
implies that the inequality is true for all n ∈ N.

If x > 0, then the Archimedean Property implies that there exists n ∈ N such that
n ≥ 1

x
. Hence, by the inequality above, the same n ∈ N satisfies

1

2n
≤ 1

n + 1
<

1

n
≤ x.

(6) Show by using completeness that there is x ∈ R\Q so that x > 0 and x3 = 2.

Solution. First, we will show that there is x ∈ R such that x > 0 and x3 = 2. Let
S = {s ∈ R : s3 < 2}. Then 1 ∈ S and S is bounded above by 2. By the Completeness
Axiom of R, x := supS exists. Note x ≥ 1 > 0.

We will make use of the following elementary inequality: if 0 ≤ a ≤ b, then

bn − an = (b− a)(bn−1 + bn−2a + · · ·+ an−1) ≤ (b− a)nbn−1.

Suppose x3 < 2. Take ε =
1

2
min{ 2− x3

3(x + 1)2
, 1} > 0. Then

(x + ε)3 − x3 ≤ 3ε(x + ε)2 <
(x + ε)2

(x + 1)2
(2− x3) ≤ 2− x3,

and so (x + ε)3 < 2. Since x < x + ε, this contradicts the fact that x = supS.

Suppose x3 > 2. Take ε =
x3 − 2

6x2
> 0. Then

x3 − (x− ε)3 ≤ 3εx2 < x3 − 2,

and so (x − ε)3 > 2. Now x − ε is an upper bound of S since s > x − ε =⇒ s3 >
(x− ε)3 > 2 =⇒ s 6∈ S. Again this contradicts the fact that x = supS.

Therefore, we must have x3 = 2. It remains to show that such x is irrational. Suppose
x is rational and x = p/q, where p, q are positive integers that are relatively prime.

Then p3 = 2q3. This implies that p3 is even, and so is p. Therefore, since p and q do
not have 2 as a common factor, then q must be odd.

Since p is even, then p = 2m for some m ∈ N, and hence 4m3 = q3. This implies that
q3 is even, and so is q.

Since the hypothesis x ∈ Q leads to the contradictory conclusion that q is both odd
and even, it must be false.


