MATH2050A Mathematical Analysis I
Suggested solution to HW 1

(1) Using the Axioms to show that for all a,b € R,
(—a)>=d*> and (a+(=b))*=a®+ (—2ab) +b°.

Solution. First we show that if a + b = 0, then b = —a (x). Indeed,

b=b40 (by A3)
=b+ (a+ (—a)) (by A4)
=(a+0b)+ (—a) (by A1, A2)
=0+ (—a) (by assumption)
= —a (by A3).

Thus, we have —a = (—1)a (**) because

a+(—)a=1-a+(—1)a (by M3)
=1+ (=1)-a (by D)
=0-a (by A4)
=a-0 (by M1)
=0 (by Theorem 2.1.2(c)).

Hence, to show that (—a)? = a?, it suffices to show that (—a)? + (—a?) = 0. Now

(—a)* + (=a®) = (=a)* + (-1)a® (by (#x))
= (—a)*+ ((-1)a)a (by M1, M2)
= (~a)’ + (—a)a (by (#x))
= (—a)(—a+a) (by D)
=(—a)-0 (by Ad)
=0 (by Theorem 2.1.2(c)).

For the second equality,

(a+(=b))* = ala+ (=0)) + (=b)(a + (~b) (by D)
=a’ +a(=b) + (=b)a+ (—b)? (by D)
= a® + a(—b) + a(—b) + b* (by M1, first equality)
= a’ +a((—1)b) + a((~1)b) + b (by (%))
=a’® + (—1)(ab) + (—1)(ab) + b* (by M1, M2)
=a® + (—1)(2ab) + V* (by D)
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(2)

Show that for all n € N,
(n,m+1)NN=1.

Show further that if m,n € Z such that m < n, then m +1 < n.

Solution. Suppose on the contrary that for some ng € N, (ng,ng+1) NN # (). Then
S={n€N:ny<n<mny+1} is a nonempty subset of N. By the Well-Ordering
Property of N, S has a least element m. Now, ng < m < ng + 1, which implies that
0<m-—ng<1and so

0<(m—mng)*<m-—mng<1.

Thus (m — ng)? + ng is a natural number that satisfies
ng < (m—mng)>+ng <m<mng+1,

contradicting the fact m is the least element of S.

Suppose there exist m,n € Z such that m <n but m 4+ 1 > n. Then n —m € N and
satisfies 0 < nm —m < 1. This contradicts the result above. O

Suppose S is a non-empty bounded subset in R. Is sup S necessarily inside S7 Justify
your answer.

Solution. Not true. For example S := [0, 1) is a non-empty bounded subset of R but
supS =1¢ S. We will check that sup S = 1.

Clearly S is bounded above by 1. Let 0 <e < 1. Then0<1—-e<1—¢/2<1. So
1 — ¢ is not an upper bound of S because 1 —e/2 € S. Therefore sup S = 1.

]

Show that if A, B are bounded subsets of R, then
sup(A+ B) =supA+supB, and inf(A+ B)=inf A+ inf B
where A+ B={a+b:a€ Abe B}.

Solution. We further assume that A and B are non-empty. Otherwise, the corre-
sponding suprema and infima do not exist.

We will only prove sup(A + B) = sup A + sup B as the other can be proved similarly.

By the Completeness Axiom of R, both sup A and sup B exist. It is clear that sup A+
sup B is an upper bound of A+ B. Indeed, for any a € A, b € B, we have a < sup A4,
b < sup B and hence a + b < sup A + sup B.

Next we show that sup A 4+ sup B is the least upper bound of A + B. Let ¢ > 0.
By Lemma 2.3.4, there are ag € A and by € B such that ap > supA — 5 and
bo > sup B — 5. Hence ag + by > sup A + sup B — . By Lemma 2.3.4 again, we have
sup(A + B) = sup A + sup B. ]

Show that 2™ > n + 1 for all n € N. Show further that for any z > 0, there isn € N
such that 2% < z.
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Solution. We will prove the first assertion by induction. The inequality is true if
n = 1. If we assume that 2¥ > k + 1, then 2**! > 2(k + 1) > k + 2. Thus, if the
inequality is true for k, then it also holds for k+1. Therefore, Mathematical Induction
implies that the inequality is true for all n € N.

If z > 0, then the Archimedean Property implies that there exists n € N such that
n > % Hence, by the inequality above, the same n € N satisfies

1 1

— <
2" T n+1

< — <.

SRS

Show by using completeness that there is x € R\Q so that x > 0 and 23 = 2.

Solution. First, we will show that there is € R such that z > 0 and 2% = 2. Let
S={seR:s%<2}. Then1 € S and S is bounded above by 2. By the Completeness
Axiom of R, x := sup S exists. Note z > 1 > 0.

We will make use of the following elementary inequality: if 0 < a < b, then
V'—a"=b—a)" '+ 0" Pa+ - +a") < (b—a)nb"

1 2 — a3
Suppose 23 < 2. Take € = §mm{3(m——|—x1)2’ 1} > 0. Then
(x +¢)?

S 2 <248
Gy igl T2

(x+e)*—a® <3e(x+e)<

and so (z +¢)® < 2. Since x < x + ¢, this contradicts the fact that z = sup S.
3

> (0. Then

Suppose 22 > 2. Take € = z
612

23— (x—¢)® <3ex® < 2’ -2,

and so (r —€)® > 2. Now z — ¢ is an upper bound of S since s >z —¢ = 5% >
(r —¢)®>2 = s¢&S. Again this contradicts the fact that x = sup S.

Therefore, we must have 2% = 2. It remains to show that such z is irrational. Suppose
x is rational and x = p/q, where p, ¢ are positive integers that are relatively prime.

Then p? = 2¢3. This implies that p? is even, and so is p. Therefore, since p and ¢ do
not have 2 as a common factor, then ¢ must be odd.

Since p is even, then p = 2m for some m € N, and hence 4m?3 = ¢®. This implies that
¢ is even, and so is q.

Since the hypothesis x € Q leads to the contradictory conclusion that ¢ is both odd
and even, it must be false. O



