Math 2050, HW 1. Due: 25 Sep 2022

(1) Using the Axioms to show that for all $a, b \in \mathbb{R}$,

$$
(-a)^{2}=a^{2} \quad \text { and } \quad(a+(-b))^{2}=a^{2}+(-2 a b)+b^{2} .
$$

(2) Show that for all $n \in \mathbb{N}$,

$$
(n, n+1) \cap \mathbb{N}=\emptyset
$$

Show further that if $m, n \in \mathbb{Z}$ such that $m<n$, then $m+1 \leq n$.
(3) Suppose S is a non-empty bounded subset in \mathbb{R}. Is $\sup S$ necessarily inside S ? Justify your answer.
(4) Show that if A, B are bounded subsets of \mathbb{R}. Show that
$\sup (A+B)=\sup A+\sup B, \quad$ and $\quad \inf (A+B)=\inf A+\inf B$ where $A+B=\{a+b: a \in A, \quad b \in B\}$.
(5) Show that $2^{n} \geq 1+n$ for all $n \in \mathbb{N}$. Show further that for any $x>0$, there is $n \in \mathbb{N}$ such that $\frac{1}{2^{n}}<x$.
(6) Show by using completeness that there is $x \in \mathbb{R} \backslash \mathbb{Q}$ so that $x>0$ and $x^{3}=2$.

