- Let V be an inner product space, and let W be a finite-dimensional subspace of V. If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^{\perp}$, but $\langle x, y \rangle \neq 0$. Hint: Use Theorem 6.6.
- 13. Let V be an inner product space, S and S_0 be subsets of V, and W be a finite-dimensional subspace of V. Prove the following results.
 - (a) $S_0 \subseteq S$ implies that $S^{\perp} \subseteq S_0^{\perp}$.
 - (b) $S \subseteq (S^{\perp})^{\perp}$; so span $(S) \subseteq (S^{\perp})^{\perp}$.

 - (c) $W = (W^{\perp})^{\perp}$. Hint: Use Exercise 6. (d) $V = W \oplus W^{\perp}$. (See the exercises of Section 1.3.)
 - 14. Let W_1 and W_2 be subspaces of a finite-dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$. (See the definition of the sum of subsets of a vector space on page 22.) Hint for the second equation: Apply Exercise 13(c) to the first equation.

Assume
$$(W_1 + W_2)^{\perp} = W_1^{\perp} \wedge W_2^{\perp}$$

Since W_1^{\perp} , W_2^{\perp} are finite-dim. $(W_1^{\perp} + W_2^{\perp})^{\perp} = (W_1^{\perp})^{\perp} \wedge (W_2^{\perp})^{\perp}$
By $(3(c))$. $W_1 = (W_1^{\perp})^{\perp}$ $W_2 = (W_2^{\perp})^{\perp}$ $W_1^{\perp} + W_2^{\perp} = ((W_1^{\perp} + W_2^{\perp})^{\perp})^{\perp}$
Therefore $W_1^{\perp} + W_2^{\perp} = ((W_1^{\perp} + W_2^{\perp})^{\perp})^{\perp} = ((W_1^{\perp})^{\perp} \wedge (W_2^{\perp})^{\perp})^{\perp}$
 $= (W_1 \wedge W_2)^{\perp}$

- 23. Let V be the vector space defined in Example 5 of Section 1.2, the space of all sequences σ in F (where F = R or F = C) such that $\sigma(n) \neq 0$ for only finitely many positive integers n. For $\sigma, \mu \in V$, we define $\langle \sigma, \mu \rangle = \sum_{n=0}^{\infty} \sigma(n) \overline{\mu(n)}$. Since all but a finite number of terms of the series are zero, the series converges.
 - (a) Prove that $\langle \cdot, \cdot \rangle$ is an inner product on V, and hence V is an inner product space.
 - (b) For each positive integer n, let e_n be the sequence defined by $e_n(k) = \delta_{n,k}$, where $\delta_{n,k}$ is the Kronecker delta. Prove that $\{e_1, e_2, \ldots\}$ is an orthonormal basis for V.
 - (c) Let $\sigma_n = e_1 + e_n$ and $W = \operatorname{span}(\{\sigma_n : n \ge 2\}.$
 - (i) Prove that $e_1 \notin W$, so $W \neq V$.
 - (ii) Prove that $W^{\perp} = \{0\}$, and conclude that $W \neq (W^{\perp})^{\perp}$.

(a) easy to cheek with the def of inner product.

(b)
$$\langle e_i, e_j \rangle = \sum_{n=1}^{\infty} e_i(n) \cdot \overline{e_j(n)} = \sum_{n=1}^{\infty} d_{i,n} \cdot \overline{d_{j,n}} = d_{i,j}$$

So $fe_i \}_{i,j}^{\infty}$ is orthonormal subset of V

 $\forall F \in V$. $S = \{ n : G(n) \neq 0 \}$ is a finite set Then $G = \{ E : G(n) \cdot E_n \in Span(\{ei\}_i^n) \}$

Therefore. {ei], is an orthonormal basis for V.

(()

(i) if $e_1 \in W$, then $e_1 = a_2 \cdot 6_2 + \cdots + a_n \cdot 6_n$ for some $a_2 \cdot c_n \in F$ Then $(a_2 + \cdots + a_n - 1)e_1 + a_2 e_2 + \cdots + a_n e_n = 0$ Since $fe_1 \cdot \cdots = e_n \cdot C$ $fe_3 \cdot C$ is $L \cdot L \cdot C$. we have $a_2 + \cdots + a_n - 1 = a_2 = \cdots = a_n = 0$ which is impossible. So $e_1 \notin W$ and thus $W \neq V$

Cii)

 $\forall v \in W^{\perp}$. we have $\langle v, 6n \rangle = 0$ for $n \geqslant 2$ i.e. $\langle v, e_1 \rangle = -\langle v, e_n \rangle$ $\forall n \geqslant 2$ i.e. $\forall c_1 \rangle = -\forall c_1 \rangle$ $\forall n \geqslant 2$ If $\forall c_1 \rangle \neq 0$, Then $\forall c_1 \rangle \neq 0$ $\forall n \geqslant 2$. Which implies $\forall \notin V$. Contradiction!

Thus $\forall c_1 \rangle = 0$ and $\forall c_1 \rangle = -\forall c_1 \rangle = 0$ $\forall n \geqslant 2$ i.e. $\forall c_1 \rangle = 0 \in V$.

Thus $W^{\perp} = \{0\}$

we anchele that $W + V = fo^{2} = (W^{\perp})^{\perp}$

Thosefore, that W is finite-d'in is essential in exercise 13(c)

9. Prove that if $V = W \oplus W^{\perp}$ and T is the projection on W along W^{\perp} , then $T = T^*$. Hint: Recall that $N(T) = W^{\perp}$. (For definitions, see the exercises of Sections 1.3 and 2.1.)

$$\begin{cases} \langle T(\nu), w \rangle = \langle \chi_{1}, \chi_{2} + y_{1} \rangle = \langle \chi_{1}, \chi_{2} \rangle \\ \langle T^{*}(\nu), w \rangle = \langle \nu, T(w) \rangle = \langle \chi_{1} + y_{1}, \chi_{2} \rangle = \langle \chi_{1}, \chi_{2} \rangle \\ S_{0} \langle T(\nu), w \rangle = \langle T^{*}(\nu), w \rangle \quad \forall \nu, w \in V. \end{cases}$$

$$S_{0} \langle T = T^{*}$$

- 12. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.
 - (a) $R(T^*)^{\perp} = N(T)$.
 - (b) If V is finite-dimensional, then $R(T^*) = N(T)^{\perp}$. Hint: Use Exercise 13(c) of Section 6.2. $R(T^*) = (R(T^*)^{\perp})^{\perp} = N(T)^{\perp}$

Remark: U = W <+> U= W tor general U.W < V

- 13. Let T be a linear operator on a finite-dimensional vector space V. Prove the following results.
 - (a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$.
 - (b) $\operatorname{rank}(\mathsf{T}) = \operatorname{rank}(\mathsf{T}^*)$. Deduce from (a) that $\operatorname{rank}(\mathsf{TT}^*) = \operatorname{rank}(\mathsf{T})$.
 - (c) For any $n \times n$ matrix A, rank $(A^*A) = \text{rank}(AA^*) = \text{rank}(A)$.
- (a) Y v ∈ N(T). T*T(v) = T*(T(v)) = T*(o) = 0 S v ∈ N(T*T) N(T) C N(T*T)

VUENCTT) ||T(V)||2 = <T(V), T(V)>= <T*T(V), V> = <0.7> = 0.

rank (T*T) = dim (v) - nullity (T*T) = dim (v) - nullity (T)
= rank(T)

(b) By Q12(b), $R(T^*) = N(T)^{\perp}$ Besides. $V = N(T) \oplus N(T)^{\perp}$ So dim(V) = dim(N(T)) + dim(N(T)) $rank(T) = dim(V) - nuhity(T) = dim(N(T)^{\perp}) = dim(R(T^*)) = rank(T^*)$ $rank(TT^*) = rank((TT^*)^*) = rank(T^*T) = rank(TT)$

10. Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that for all $x \in V$

$$\|\mathsf{T}(x) \pm ix\|^2 = \|\mathsf{T}(x)\|^2 + \|x\|^2.$$

Deduce that T - iI is invertible and that $[(T - iI)^{-1}]^* = (T + iI)^{-1}$.

- T is self-aetjoint. Hen $T = T^*$ and $\langle T(n), n \rangle = \langle x, T(n) \rangle$
- $\|T(x) \pm ix\|^2 = \langle T(x) \pm ix, T(x) \pm ix \rangle$ $= \|T(x)\|^2 + \langle T(x), \pm ix \rangle + \langle \pm ix, T(x) \rangle + \|\pm ix\|^2$ $= \|T(x)\|^2 \mp i \langle T(x), x \rangle \pm i \langle x, T(x) \rangle + \|x\|^2$ $= \|T(x)\|^2 + \|1x\|^2$
- $\forall x \in NCT-iI$) $0 \leq ||x||^2 \leq ||T(x)||^2 + ||x||^2 = ||T(x) ix||^2 = ||(T-iI)(x)||^2 = 0$ So x = 0 i.e. T-iI is i-1 and thus invertible.
- · Since T= [*, (T-i])* = T*+i]* = T+i]
- $\langle x, [(T-iI)^{\dagger}]^{*}(T+iI) (y) \rangle$ = $\langle (T-iI)^{\dagger} (x), (T+iI) (y) \rangle$ = $\langle (T-iI)^{\dagger} (x), (T-iI)^{*} (y) \rangle$ = $\langle (T-iI) (T-iI)^{\dagger} (x), y \rangle$ = $\langle x, y \rangle$ for any $x, y \in V$

Thus
$$[(T-iI)^{\dagger}]^{*}$$
 o $(T+iI) = I$

$$[(T-iI)^{\dagger}]^{*} = (T+iI)^{-1}$$