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6. Let V be an inner product space, and let W be a finite-dimensional
subspace of V. If x ¢ W, prove that there exists y € V such that
y € WL, but (x,y) # 0. Hint: Use Theorem 6.6.

13. Let V be an inner product space, S and Sy be subsets of V, and W be
a finite-dimensional subspace of V. Prove the following results.

(a) Sp C S implies that S+ C Sg-.
(b) S C(S*)*; sospan(S) C (SH)*.
W = (W)L, Hint: Use Exercise 6.
V =W @ W-=. (See the exercises of Section 1.3.)

14. Let Wy and W5 be subspaces of a finite-dimensional inner product space.
Prove that (W1 +Ws)t = W NW3 and (W;NW3)+ = W +Ws. (See
the definition of the sum of subsets of a vector space on page 22.) Hint
for the second equation: Apply Exercise 13(c) to the first equation.
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23. Let V be the vector space defined in Example 5 of Section 1.2, the
space of all sequences o in F' (where F' = R or F' = (') such that
o(n) # 0 for only finitely many positive integers n. For o,u € V, we

define (o, u) = Z o(n)u(n). Since all but a finite number of terms of
n=1

the series are zero, the series converges.

(a) Prove that (-, +) is an inner product on V, and hence V is an inner
product space.

(b) For each positive integer n, let e, be the sequence defined by
en(k) = Onk, where 6, is the Kronecker delta. Prove that
{e1,ea,...} is an orthonormal basis for V.

(c) Let o, =e1 + e, and W = span({o,,: n > 2}.

(i) Prove that ey ¢ W, so W # V.
(ii) Prove that W+ = {0}, and conclude that W # (W)=
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9. Prove that if V. = W @® W+ and T is the projection on W along W+,

then T = T*. Hint: Recall that N(T) = W-. (For definitions, see the
exercises of Sections 1.3 and 2.1.)
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12. Let V be an inner product space, and let T be a linear operator on V.
Prove the following results.

(a) R(T*)* = N(T).
(b) If V is finite-dimensional, then R(T*) = N(T)L. Hint: Use Exer-
cise 13(c) of Section 6.2, RCT*Y = U’\C’l&)L)‘L = ND*

Remoark = U = W <-=};> h= Wt %M AW <y

13. Let T be a linear operator on a finite-dimensional vector space V. Prove
the following results.

(a) N(T*T) = N(T). Deduce that rank(T*T) = rank(T).
(b) rank(T) = rank(T*). Deduce from (a) that rank(TT*) = rank(T).
(c) For any n x n matrix A, rank(A*A) = rank(AA*) = rank(A).
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10. Let T be a self-adjoint operator on a finite-dimensional inner product
space V. Prove that for all x € V

IT(2) + iz|® = I T(@)[I* + [l=]|*.

Deduce that T — il is invertible and that [(T —il)~1]*
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