Lecture 9:
Space of linear transformation
Prop: Let V and W be vector spaces over F.
Then: the set $\mathcal{L}(V, W)$ of all linear transformations from V to W is a vector space over F under the following operations: for linear $T, U: V \rightarrow W$, we define: $(T+U): V \rightarrow W$ by $(T+U)\left(\vec{x}_{n}\right)=T(\vec{x})+U(\vec{x})$ and for any $a \in F$, we define $a T: V \rightarrow V$ by

$$
(a T) \underset{\widehat{N}}{(\vec{x})}=a T(\vec{x})
$$

The: Let V and W be finite-dimensiunal vector spaces over F. with dimension n and m respectively. Let β and γ be the ordered bases for V and W respectively,
Then: the map $\Phi: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$ defined by $\Phi(T)=[T]_{\beta}^{\gamma}$ is an isomorphism.

Cor:

$$
\operatorname{dim}(\mathcal{L}(V, W))=\operatorname{dim}(V) \operatorname{dim}(w)=n m
$$

Proof: Φ is linear: $\Phi(T+u)=[T+u]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[u]_{\beta}^{\gamma}$

$$
\begin{aligned}
\Phi(a T)=[a T]_{\beta}^{\gamma} & =a[T]_{\rho}^{\gamma} \\
& =a \Phi(T)
\end{aligned}
$$

Φ is bijective:
For any $A=\left(A_{i j}\right) \in M_{m \times n}(F)$,
$\exists!T: V \rightarrow W$ such that

$$
\begin{aligned}
& \text { ! } T: V \rightarrow W \text { such that } \quad T\left(\vec{v}_{j}\right)=\sum_{i=1}^{m} A_{i j} \vec{w}_{i} \text { for } j=1,2, \ldots, m \\
& \left.\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}, \begin{array}{c}
\gamma=\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\} \\
{\left[T\left(\vec{v}_{j}\right)\right]_{\gamma}} \\
\mid
\end{array}\right)
\end{aligned}
$$

\therefore For any $A, \exists\left(\cap_{\pi} T: V \rightarrow W\right.$ such that $\Phi(T)=A$. (Onto) $\tilde{n}_{\min (F)}(-1)$
$\therefore \Phi$ is bijective,

Def Let β be the ordered basis for an n-dimensional vector space. V over F. The map $\phi_{\beta}: V \rightarrow F^{n}, \vec{x} \mapsto[x]_{\beta}$ is called standard representation of V with respect to β.

Prop: ϕ_{β} is an isomorphism,

Given vector spaces V and W of dimension n and m, with ordered bases β and γ respectively. Then, for any $T: V \rightarrow W$ (linear), we have:

$$
\begin{aligned}
& \vec{v} \in V \xrightarrow{T} W T(\vec{v}):=\vec{\omega} \\
& \phi_{\beta} \downarrow \\
& {[\vec{v}]_{\beta} \in F^{n} L_{A} F^{m}[\vec{w}]_{\gamma}=\left[T(\vec{v})_{\gamma}\right.}
\end{aligned}
$$

where $A=[T]_{\beta}^{\gamma} \quad \Rightarrow \phi_{\gamma} \circ T(\vec{v})=L_{A} \circ \phi_{\beta}(\vec{v})$
$A=\left[T \beta \quad[T(\vec{v})]_{\gamma}=[T]_{\beta}^{\gamma}[\vec{v}]_{\beta}\right.$

Change of coordinates
Prop: Let β and β^{\prime} be two ordered bases for a finite-dim. vector space V, and let $Q=\left[I_{v}\right]_{\beta^{\prime}}^{\beta}$.

$$
\underset{\beta^{\prime}}{V} \xrightarrow{I_{v}} V_{\beta}
$$

Then: (a) Q is invertible
(b) For all $\vec{v} \in V,[\vec{v}]_{\beta}=Q[\vec{v}]_{\beta}$
'roof: (a) Since I_{v} is invertible, Q is invertible.
ग) Let $\vec{v} \in V$. Then: $\left.[\vec{v}]_{\beta}=\left[I_{v}(\vec{v})\right]_{\beta}=I_{v}\right]_{\beta^{\prime}}^{\beta}[\vec{v}]_{\beta^{\prime}}$,
E: The matrix $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$ is called the Q change of coordinate matrix from β^{\prime} to β.

Remark: To compute $Q=[I v]_{\beta^{\prime}}^{\beta}$, if $\beta=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\}$ and $\beta^{\prime}=\left\{\vec{x}_{1}{ }^{\prime}, \vec{x}_{2}^{\prime} \ldots, \vec{x}_{n}{ }^{\prime}\right\}$, then:

$$
\begin{aligned}
Q & =\left(\begin{array}{ccc}
1 & \\
{\left[\operatorname{Iv}\left(\vec{x}_{1}^{\prime}\right)\right]_{\beta}} & \cdots & \cdots \\
1 & & \\
1 & & \\
& =\left(\begin{array}{ccc}
{\left[\vec{x}_{1}^{\prime}\right]_{\beta}} & \cdots & {\left[\vec{x}_{j}^{\prime}\right]_{\beta}}
\end{array}\right. & \cdots \\
1 & 1
\end{array}\right)
\end{aligned}
$$

Proposition: Let T be a linear operator on finite-dim V Let β and β^{\prime} be ordered bases of V. Suppose $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$.
Then:

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q
$$

$$
\begin{gathered}
\text { Proof: } Q[T]_{\beta^{\prime}}= \\
\underset{\beta^{\prime}}{I_{v}} \underset{\beta}{V} \xrightarrow{T} V
\end{gathered}
$$

$$
\begin{aligned}
{\left[I_{v}\right]_{\beta^{\prime}}^{\beta}[T]_{\beta^{\prime}}^{\beta^{\prime}} } & =\left[I_{v} \circ T\right]_{\beta^{\prime}}^{\beta} \\
& =\left[T_{0} I_{v}\right]_{\beta^{\prime}} \\
& =[T]_{\beta}^{\beta}\left[I_{v}\right]_{\beta^{\prime}}^{\beta^{\prime}} \\
& =[T]_{\beta} Q
\end{aligned}
$$

Remark: A linear $T: V \rightarrow V$ is called linear operator.

Corollary: Let $A \in M_{n \times n}(F)$ and let $\gamma=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right\}$ be an ordered basis for F^{n}.
Then: $\left[L_{A}\right]_{\gamma}=Q^{-1} A Q, \quad Q=\left(\begin{array}{cccc}\vec{x}_{1} & \vec{x}_{2} & \ldots & \vec{x}_{n} \\ 1 & 1 & \ldots & 1\end{array}\right)$

$$
\left.\Leftrightarrow\left[L_{A}\right]_{\gamma}=Q^{-1}\left[L_{A}\right]_{\beta}^{\beta}\right]_{\substack{\text { standard } \\ \text { order } \\ \text { basis. }}} Q
$$

