Lecture 9:

Space of linear transformation Let V and W be vector spaces over F. Then: the set (L(V,W)) of all linear transformations Prop: from V to W is a vector space over F under the following operations: for linear $T, U: V \rightarrow W$, we define: $(T+U): V \rightarrow W$ by $(T+U)(\vec{x}) = T(\vec{x}) + U(\vec{x})$ and for any a EF, we define a T: V > W by $(aT)(\bar{x}) = aT(\bar{x})$

Thm: Let V and W be finite-dimensional vector spaces over F.
with dimension N and M respectively. Let B and S be the
ordered bases for V and W respectively.
Then: the map
$$\underline{\Psi}: \mathcal{L}(V, W) \rightarrow M_{mxn}(F)$$
 defined
by $\underline{\Psi}(T) = [T]_{\mathcal{B}}^{S}$ is an isomorphism.
Cor: $\dim(\mathcal{L}(V, W)) = \dim(V) \dim(W) = NM$.

-

Proví:
$$\overline{\Phi}$$
 is kinear : $\overline{\Phi}(T+U) = [T+U]_{p}^{\gamma} = [T]_{p}^{\gamma} + [U]_{p}^{\gamma}$
 $\overline{\Phi}(aT) = [aT]_{p}^{\gamma} = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(aT) = [aT]_{p}^{\gamma} = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(aT) = \overline{P}(T)$.
 $\overline{\Phi}(aT) = [aT]_{p}^{\gamma}$
 $\overline{\Phi}(T) = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(T)$.
 $\overline{\Phi}(T) = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(T)$.
 $\overline{\Phi}(T) = a[T]_{p}^{\gamma}$
 $\overline{\Phi}(T)$.
 $\overline{\Phi}(T) = A$.
 $T(\overline{v}_{j}) = \sum_{i=1}^{m} A_{ij} \overline{w}_{i}$ for $j=1,2...,m$
 $\beta = \{\overline{v}_{i}, \overline{v}_{2}, ..., \overline{v}_{n}\}$, $\gamma = \{\overline{w}_{i}, ..., \overline{w}_{n}\}$
 $\beta = \{\overline{v}_{i}, \overline{v}_{2}, ..., \overline{v}_{n}\}$, $\gamma = \{\overline{w}_{i}, ..., \overline{w}_{n}\}$
 $\overline{\Phi}(T) = A$. (Orto)
 $\overline{M}_{mm}(F)$ (-1)
 $\overline{\Phi}$ is bijective,

Def Let β be the ordered basis for an n-dimensional vector space.
V over F. The map
$$P_{\beta}: V \rightarrow F^{n}$$
, $\vec{x} \mapsto [x]_{\beta}$ is
called standard representation of V with respect to β.
Prop: Φ_{β} is an isomorphism,

Change of coordinates Prop: Let B and B' be two ordered bases for a finite-dim. Vector space V and let $Q = [Iv]_{\beta'}^{\beta}$. $V \xrightarrow{Iv}_{\beta'} V$ Then: (a) Q is invertible (b) For all $\vec{v} \in V$, $[\vec{v}]_{\beta} = Q[\vec{v}]_{\beta}$ roof: (a) Since Ir is invertible, Q is invertible. o) Let $\vec{v} \in V$. Then: $[\vec{v}]_{\beta} = [I_{v}(\vec{v})]_{\beta} = [I_{v}]_{\beta}^{\beta} [\vec{v}]_{\beta}$ E: The matrix Q = [Iv] pr is called the Q change of coordinate matrix from p' to B.

$$\frac{\text{Remark}:}{\text{To compute } Q = C \text{Iv} J_{\beta'}^{\beta}, \\ \text{I, } \beta = \tilde{z} \tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n \tilde{z} \text{ and } \beta' = \tilde{z} \tilde{x}_1', \tilde{x}_2' \dots, \tilde{x}_n' \tilde{z}, \\ \text{Hen: } Q = \begin{pmatrix} I \\ \Gamma v(\tilde{x}_1') J_{\beta} & - & - \\ J & J \end{pmatrix} \\ = \begin{pmatrix} \Gamma \tilde{x}_1' J_{\beta} & - & \Gamma \tilde{x}_3' J_{\beta} & \dots \\ I & I & J \end{pmatrix}$$

Propusition: Let T be a linear operator on finite-dim V Let β and β' be ordered bases of V. Suppose $Q = [Iv]_{\beta'}^{\beta}$. $[T]_{p'} = Q^{T}[T]_{p}Q$ Then: $\bigvee^{\mu} \xrightarrow{T} \bigvee^{\mu} \xrightarrow{P} (T)_{\mu}$ <u>Proof</u>: Q[T]_p' = [I_v]_p' [T]_p' = [I_v · T]_p' $\bigvee^{\beta'} \xrightarrow{T} \bigvee^{\beta'} \longrightarrow^{\sigma} CT$ $= [T \cdot I_v]_{\beta'}$ $V \xrightarrow{I_{\nu}} V \xrightarrow{T} V$ $\beta' \quad \beta \quad \beta$ $= [T]_{\rho}^{\rho} [I_{\nu}]_{\rho}^{\rho}$ = [T]_BQ Remark: A linear T: V -> V is called linear operator.

Corollary: Let
$$A \in M_{n\times n} (F)$$
 and let $\forall = \{\bar{x}_1, \bar{x}_2, ..., \bar{x}_n\}$ be
an ordered basis for F^n .
Then: $[L_A]_{\forall} = Q^{-1}A \otimes Q = (\bar{\chi}_1 \ \bar{\chi}_2 \ ..., \bar{\chi}_n)$
 $(\Rightarrow [L_A]_{\forall} = Q^{-1}L_A]_B Q$
standard
ordered
basis.

-