Lecture 8:

Recall: Let V and W be finite-dimensional vector spaces with ordered basis β and γ respectively.
Let $T: V \rightarrow W$, be linear. Then: for any $\vec{u} \in V$, we have:

Example: $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by:

$$
\begin{aligned}
& T(A) \stackrel{\operatorname{def}}{=} A^{\top}+2 A . \\
& \beta=\left\{\left(\begin{array}{lll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \\
& {[T]_{\beta}=\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)} \\
& \text { Let } B=\left(\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right) \\
& {\left[\begin{array}{llll}
\mid \\
{[(B)}
\end{array}\right]_{\beta}=\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{\beta}^{\prime} \quad\left(\begin{array}{l}
3 \\
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
9 \\
5 \\
4 \\
0
\end{array}\right)} \\
&
\end{aligned}
$$

Invertibility and Isomorphism
Definition: Let V and W be vector spaces and let $T: V \rightarrow W$ be linear. We can say T is invertible if it is bijective (1-1 and onto) so that $\exists T^{-1}: W \rightarrow V$ such that:

$$
T^{-1} \cdot T=I_{v} \text { and } T \cdot T^{-1}=I_{w}
$$

- If V and W are of equal finite -dimensions, then $T: V \rightarrow W$ is invertible iff $\operatorname{rank}(T)=\operatorname{dim}(V)$.
- The inverse $T^{-1}: W \rightarrow V$ of an invertible linear transformation $T: V \rightarrow W$ is linear.
- Suppose $T: V \rightarrow W$ is invertible. Then: $\operatorname{dim}(V)<+\infty$ iff $\operatorname{dim}(W)<+\infty$
And in this case, $\operatorname{dim}(V)=\operatorname{dim}(W)$

Proposition: Let V and W be finite-dimensional vector spaces with ordered basis β and γ respectively.
Let $T: V \rightarrow W$ be linear transformation.
Then: T is invertible of $[T]_{\beta}^{\gamma}$ is invertible.
Furthermore,

$$
\underbrace{\left[T^{-1}\right]_{\gamma}^{\beta}}_{\substack{\text { Matrix } \\ \text { representation } \\ \text { of } T^{-1}}}=\underbrace{\left([T]_{\rho}^{\gamma}\right)^{-1}}_{\text {Inverse of matrix. }}
$$

Proof: Suppose T is invertible. Then: $\operatorname{dim}(V)=\operatorname{dim}(w)=n$
Since $T \cdot T^{-1}=I_{W}$,

$$
\underset{\gamma}{W} \underset{\beta}{T_{\gamma}^{-1}} \underset{\gamma}{T} W
$$

$$
\begin{aligned}
I_{n}=\left[I_{w}\right]_{\gamma} & =\left[T 0 T^{-1}\right]_{\gamma} \\
I_{n} & =[T]_{\beta}^{\gamma}\left[T^{-1}\right]_{\gamma}^{\beta}
\end{aligned}
$$

Similarly, $T_{0}^{-1} \cdot T=I_{V}$.

$$
\begin{aligned}
I_{n}=\left[I_{v}\right]_{\beta} & =\left[T^{-1} \circ T\right]_{\beta} \\
I_{n} & =\left[T^{-1}\right]_{\gamma}^{\beta}[T]_{\beta}^{\gamma}
\end{aligned}
$$

$\therefore[T]_{\beta}^{\gamma}$ is invertible and $\left(\left[T J_{\beta}^{8}\right)^{-1}=\left[T^{-1}\right]_{\gamma}^{\beta}\right.$.

Conversely, suppose $A:=[T]_{\rho}^{\dot{\gamma}}$ is invertible. $(\Rightarrow \operatorname{dim}(V)=\operatorname{dim}(\omega))$

$$
\because \operatorname{dim}(V)=\operatorname{dim}(W)
$$

\therefore We only need to show T is one-to-one,
So, suppose $T\left(\vec{x}_{1}\right)=T\left(\vec{x}_{2}\right)$

$$
\begin{aligned}
& \left.\Leftrightarrow \underset{1}{\left[T\left(\stackrel{\rightharpoonup}{x}_{1}\right)\right.}\right]_{\gamma}=\left[T\left(\frac{1}{\vec{x}_{2}}\right)\right]_{\gamma} \\
& \Rightarrow \underbrace{[T]_{\beta}^{\gamma}}_{A}{ }_{1}^{\left[\dot{x}_{1}\right]_{\beta}}=\underbrace{[T]^{\prime}}_{A}{ }_{\beta}^{\left[\dot{x}_{2}\right]_{\beta}}{ }_{1}^{{ }^{\prime}} \\
& \left.\Rightarrow \stackrel{A}{1} \underset{{ }_{1}}{\left.\stackrel{\vec{x}_{1}}{1}\right]_{\beta}}=\stackrel{1}{\left[\vec{x}_{2}\right.}\right]_{\beta} \Rightarrow \vec{x}_{1}=\vec{x}_{2}
\end{aligned}
$$

Corollary: Let V be a finite-dimensional vector space with ordered basis β. Let $T: V \rightarrow V$ be a linear transformation.
Then: T is invertible of $[T]_{\beta}$ is invertible Furthermore, $\left[T^{-1}\right]_{\beta}=\left([T]_{\beta}\right)^{-1}$. $\left[L_{A}\right]_{\beta} \kappa^{\text {standard basis ordered }}$
Corollary: Let $A \in M_{n \times n}(F)$. Then: A is invertible iff L_{A} is invertible. $\left(L_{A}\right)^{-1}=L_{A^{-1}}$

$$
\left[\left(L_{A}\right)^{-1}\right]_{\beta}=\left(\left[L_{A}\right]_{\beta}\right)^{-1}=A^{-1}=\left[L_{A-1}\right]_{\beta}
$$

Definition: Let V and W be two vector spaces.
We say V is isomorphic to W if \exists an invertible linear transformation $T: V \rightarrow W$.
In this case, T is called an isomorphism from V onto W.

Thu: Let V and W be finite-dimensional vector spaces.
Then: V is isomorphic to W iff $\operatorname{dim}(V)=\operatorname{dim}(W)$.
Proof: (\Rightarrow) This direction follows from previous Leona.
(\Leftrightarrow) : Suppose $\operatorname{dim}(V)=\operatorname{dim}(W) \stackrel{\operatorname{def}}{=} n$ and let $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ be basis for V;
$\gamma=\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}\right\}$ be basis for W.
Then \exists linear $T: V \rightarrow W$ such that $T\left(\vec{v}_{i}\right)=\vec{\omega}_{i}$
for $i=1,2, \ldots, n$.
By construction, T is onto and $\operatorname{dim}(V)=\operatorname{dim}(U)$.
So, T is one-to-one. $\therefore T$ is invertible.

Corollary: Let V be a vector space over F.
Then: V is isomorphic to F^{n} iff $\operatorname{dim}(V)=n$

