Lecture 5:
Zorn's Lemma
Let $S$ be a partially ordered set. If every chain of $S$ has an upper bound in $S$, then $S$ contains a maximal elements.

Definition 1: (Partially ordered) A partially ordered on a (non-empty) set $S$ is a binary relation on $S$, denoted $\leqslant$, which satisfies:

- for $\forall s \in S, s \leq s$
- if $S \leqslant s^{\prime}$ and $s^{\prime} \leqslant S$, then $S=S^{\prime}$
- if $S \leqslant S^{\prime}$ and $S^{\prime} \leqslant S^{\prime \prime}$, then $S \leqslant S^{\prime \prime}$.

Definition 2: If every elements in a partially ordered set $S$ is comparable under $\leqslant$, then $S$ is called a totally ordered set.

Definition 3: A chain is a collection of elements in $S$ satisfying: if $S_{1} \in S$ and $S_{2} \in S$, then either $S_{1} \leqslant S_{2}$ or $S_{2} \leq S_{1}$.

For simplicity, we may consider countable chain $S_{1} \leq S_{2} \leq \ldots$ in our discussia ( $n$ ot necessarily countable) for the ease of explanation

Definition 4: A maximal element $m$ of a partially ordered set $S$ is defined as follows: for $\forall s \in S$ to which $m$ is comparable, $s \leq m$.

Definition 5 An upper bound $\tilde{C}$ of a chain $\left\{C_{i}\right\}_{i \in I}$ is that for all $i$,

$$
C_{i} \leqslant \widetilde{C}
$$

Zorn's lemma (adapted to 2048)
Let $V$ be a vector space. Let $S$ be the collection of linearly independent Subsets of $V$. Then $S$ is partially ordered under $\subseteq$.
Assume every chain $\left\{L_{\alpha}\right\}_{\alpha \in I}$ of $S$ has a upper bound.
(Obviously, $\bigcup_{\alpha} L_{\alpha}$ is an upper bound of the chain. We need to show that
$U L_{\alpha}$ is linearly independent)
Then: $S$ has a maximal element.

Theorem: Every vector space has a basis.
Proof: Let $l$ be the collection of all linearly independent Subsets of $V$.
For any chain $\left\{S_{i}\right\}_{i \in I}\left(\begin{array}{cc}\text { we may consider a countable chain } \\ S_{1} c S_{2} c \ldots \text { for easier inter }\end{array}\right.$ $\bigcup_{i \in I} S_{i}$ is also linearly independent. $\therefore \bigcup_{i} S_{i} \in e$.
By Zorn's lemma, $\exists$ maximal linearly independent net $M$. We claim that $\operatorname{span}(M)=V$.
If not, $\exists \vec{v} \in V \quad \vec{v} \notin \operatorname{Span}(M)$.
$\therefore$ (1) $\operatorname{Span}(M)=V$
Then: $M \cup\{\vec{v}\}$ is linearly independent.
But $M \subset M \cup\{\vec{v}\}$. Centradition to Zorn's lemma.
(2) $M$ is L.I.
$\Rightarrow M$ is a basis.

Theorem: Every spanning set of a non-zero vector space $V$ contains a basis of $V$.
Proof: Let $\mathcal{S}$ be a spanning set of $V$.
Let $e$ be the collection of linearly independent subsets of $\rho$. Then $e \neq \phi$ (as $\{\vec{u}\} \in e$ for any $\vec{v}_{\epsilon}^{* 0} \rho$ )
Then, $e$ under $\subseteq$ is partially ordered.
Let $\left\{L_{i}\right\}_{i \in I}$ be a chain in $e$
Then $\bigcup L_{i} \subset e$ and $\bigcup_{i} L_{i}$ is an upper bound.
By Zorn's lemma, there is a maximal element $B$ in $C$.
(i.e. a linearly independent subset of $S$ which is maximal)

We'll show that $\operatorname{Span}(\beta)=\operatorname{Spam}(S)=V$
It suffices to show that for any $\vec{v} \in S, \vec{v} \in \operatorname{Span}(\beta)$.
If not, suppose $\vec{v} \notin \operatorname{Span}(\beta)$.
Then: $\beta \cup\{\vec{v}\}$ is linearly independent subset of $\mathcal{S}$.
Hence, $\beta \cup\{\vec{v}\} \in \ell$. But $B \cup\{\vec{v}\} \ngtr \beta$.
Contradicting to the fact that $\beta$ is maximal.

$$
\begin{aligned}
& \therefore \vec{v} \in \operatorname{Span}(\beta) \\
& \therefore \operatorname{Span}(\beta)=\operatorname{Span}(\beta)=V
\end{aligned}
$$

$\therefore \sqrt{3}$ is a basis.

Remark: To find a basis inside a spanning set $S$, it's natural to find a minimal spanning Set of $V$ inside $\mathcal{J}$.
If $M \subset S$ is minimal, then $M$ is linearly independent.
If not, we can find $v \in M \rightarrow \operatorname{Span}(\mathcal{M} \backslash\{\vec{v}\})=\operatorname{Span}(M)$, contradicting the minimality of $M$.
One might consider Zorn's lemma as follows:
Let $e$ be the set of all spanning subsets of $S$, partially order $l$ by reverse inclusion. That is: $S_{1} \in e$ and $S_{2} \in e, S_{1} \leqslant S_{2}$ ff $S_{1} \geq S_{2}$.
For any chain $\left\{S_{i}\right\}_{i \in I}$ in $e, \bigcap_{i \in I} S_{i}$ is the upper bound.
If $\bigcap_{i \in I} S_{i} \in e$, then Zorn's lemma tells us $e$ has a maximal element (i.e. minimal spanning set)

BUT: $\bigcap_{i \in I} S_{i}$ MAY NOT always in $e$ !!

Linear Transformation
Definition: Let $V$ and $W$ be vector spaces over $F$. A linear transformation from $V$ to $W$ is a map $T: V \rightarrow W$ such that: (a) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
(b) $T(a \vec{x})=a T(\vec{x})$ for all $\vec{x}, \vec{y} \in V, a \in F$.


Proposition: Let $T: V \rightarrow W$ be a linear transformation. Then:
(i) $T\left(\overrightarrow{0}_{v}\right)=\vec{o}_{w}$
(ii) $T\left(\sum_{i=1}^{n} a_{i} \vec{x}_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(\vec{x}_{i}\right) \quad \forall \vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n} \in V$
( $T$ preserves linear combination)
(i) $T\left(\vec{O}_{v}\right)=T\left(\vec{O}_{v}+\vec{O}_{v}\right)=T\left(\vec{O}_{v}\right)+T\left(\vec{O}_{v}\right)$
$\Rightarrow T\left(\vec{O}_{v}\right)=\vec{O}_{w}$. (Cancellation law)
(ii) Use math. induction (exercise)

Examples: - For any vector spaces $V$ and $W$, we have:
(a) The zeno transformation $T_{0}: V \rightarrow W$ defined by $T_{0}(\vec{x}):=\vec{O}_{W}$
(b) The identity transformation $I_{V}: V \rightarrow V$ defined by for $\forall \vec{x} \in V$ $I_{v}(\vec{x})=\vec{x}$ for $\forall \vec{x} \in V$.

- Let $A \in M_{m \times n}(F)$ be a $m \times n$ matrice. $F$.

Define: $L_{A}: F^{n} \rightarrow F^{m}$ as: ( $F^{n}=$ space of col vectors of size $n$ )

$$
L_{A}(\vec{x}) \stackrel{\operatorname{def}}{=} A \vec{x}
$$

$L_{A}$ is called the left multiplication by $A$.

- $T=M_{m \times n}(F) \rightarrow M_{n \times m}(F)$ defined by $T(A) \stackrel{\operatorname{def}}{=} A^{t}$ (transpose of $A$ )
- $T: P_{n}(\mathbb{R}) \rightarrow P_{n-1}(\mathbb{R})$ defined by $T(f(x))=f^{\prime}(x)$ is a lin. transf.
- Let $a$ and $b \in \mathbb{R}, a<b$. Then,
$T: C(\mathbb{R}) \rightarrow \mathbb{R}$ defined by: (Space of continuous)

$$
T(f) \stackrel{\operatorname{def}}{=} \int_{a}^{b} f(t) d t
$$

Null space or Range
Definition: Let $V$ and $W$ be vector spaces and $T: V \rightarrow W$ be a linear transformation
Then, the null space (or kernel) of $T$ is defined as:

$$
N(T): \stackrel{\operatorname{def}}{=}\{\vec{x} \in V: T(\vec{x})=\overrightarrow{o w}\} \subset V
$$

the range (or image) of $T$ is defined as:

$$
R(T):=\{T(\vec{x}): \vec{x} \in V\} \subset W
$$

e.g. For $I_{V}: V \rightarrow V$,

$$
N\left(I_{v}\right)=\left\{\vec{o}_{v}\right\}, \quad R\left(I_{v}\right)=V
$$

(identity)
For $T_{0}=V \rightarrow \omega, \quad N\left(T_{0}\right)=V, \quad R\left(T_{0}\right)=\left\{\overrightarrow{0}_{w}\right\}$ (zeno transf)

$$
\text { - } \begin{aligned}
& L_{A}: F^{n} \rightarrow F^{m} \quad\left(A \in M_{m \times n}(F)\right) \\
& N\left(L_{A}\right)=N(A)=\text { null space of } A
\end{aligned}
$$

$R\left(L_{A}\right)=e(A)=\operatorname{col}$ space of $A$ (space of linear combination of col vectors of A)

- For $T: P_{n}(\mathbb{R}) \rightarrow P_{n-1}(\mathbb{R})$ defined by $T(f(x))=f^{\prime}(x)$, then:

$$
\begin{aligned}
& N(T)=\left\{a_{0} \in P_{n}(\mathbb{R}): a_{0} \in \mathbb{R}\right\} \\
& R(T)=P_{n-1}(\mathbb{R})
\end{aligned}
$$

Proposition: Let $T: V \rightarrow W$ be a linear transformation.
Then : $N(T)$ and $R(T)$ are subspaces of $V$ and $W$ respectively,
Proof: $\because T\left(\vec{o}_{v}\right)=\overrightarrow{0}_{w}$
$\therefore \vec{O}_{v} \in N(T)$ and $\overrightarrow{0}_{w} \in R(T)$
Let $\vec{x}$ and $\vec{y} \in N(T)$ and $a \in F$. Then:

$$
\begin{aligned}
& d \vec{y} \in N(T) \text { and } a \in F . \\
& T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})=\vec{O}_{w}+\vec{o}_{w}=\overrightarrow{0}_{w} \text { and } \\
& T(a \vec{x})=a T(\vec{x})=a \vec{O}_{w}=\vec{o}_{w}
\end{aligned}
$$

$\therefore \vec{x}+\vec{y} \in N(T)$ and $a \vec{x} \in N(T)$
$\therefore \quad N(T)$ is a subspace of $V$.

Now, let $\vec{u}, \vec{v} \in R(T)$ and $a \in F$.
Then: $\exists \vec{x}, \vec{y} \in V$ such that $\vec{u}=T(\vec{x})$ and $\vec{v}=T(\vec{y})$
So, $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})=\vec{u}+\vec{v} \Rightarrow \vec{u}+\vec{v} \in R(T)$

$$
T(a \stackrel{\stackrel{\rightharpoonup}{x}}{\vec{x}})=a T(\vec{x})=a \vec{u} \Rightarrow a \vec{u} \in R(T)
$$

$\therefore R(T)$ is a subspace of $W$.

Remark: $T: V \rightarrow W$ is onto iff $R(T)=W$ (follows from the def)
Proposition: A linear transformation $T: V \rightarrow W$ is one-to-one iff $N(T)=\{\overrightarrow{0}\}$.
Pf: (Recap: One-to-one $\Leftrightarrow$ " $T(\vec{x})=T(\vec{y}) \Rightarrow \vec{x}=\vec{y} "$
$\Leftrightarrow$ If $T$ is one-to-one, then: for any $\vec{x} \in N(T)$, we have

$$
\begin{aligned}
T(\vec{x}) & =\vec{o}_{w}=T\left(\vec{o}_{v}\right) \\
\Rightarrow \quad \vec{x} & =\vec{o}_{v}
\end{aligned}
$$

This implies $\quad N(T)=\left\{\vec{o}_{v}\right\}$.
$(\Leftarrow)$ Suppose $N(T)=\{\vec{o} v\}$
Let $\vec{x}, \vec{y} \in V$ such that $T(\vec{x})=T(\vec{y})$.
Then: $T(\vec{x})-T(\vec{y})=T(\vec{x}-\vec{y})=\overrightarrow{0}$
This implies $\vec{x}-\vec{y} \in N(T)=\left\{\overrightarrow{0}_{v}\right\}$

$$
\therefore \vec{x}-\vec{y}=\overrightarrow{0} v \text { or } \quad \vec{x}=\vec{y}
$$

$\therefore \quad T$ is $1-1$.

Definition: Let $T: V \rightarrow W$ be a linear transformation.
If $N(T)$ and $R(T)$ are finite-dimensional, we define:

- Nullity is denoted as Nullity $(T)$ is the dimension of $N(T)$.
- Rank is denoted as $\operatorname{Rank}(T)$ is the dimension of $R(T)$.
Lemma: Let $T=V \rightarrow W$ be a linear transformation. If $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is a basis for $V$, then:

$$
R(T)=\operatorname{span}(T(\beta)) \stackrel{\operatorname{def}}{=} \operatorname{span}\left\{T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \ldots, T\left(\vec{v}_{n}\right)\right\}
$$

Proof: $\because T\left(\vec{v}_{j}\right) \in R(T)$ for $j=1,2, \ldots, n$ and $R(T)$ is subspace.

$$
\therefore \quad \operatorname{Span}\left\{\begin{array}{cc}
\left.T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \ldots, T\left(\vec{v}_{n}\right)\right\} & \hat{N} \\
\hat{R}(T) & \hat{R}(T) \\
R(T)
\end{array}\right.
$$

Conversely, let $\vec{\sim} \in R(T)$ where $\vec{x} \in V$. $T(\vec{x})$
Then: $\exists a_{1}, a_{2}, \ldots, a_{n} \in F$ s.t. $\vec{x}=\sum_{j=1}^{n} a_{j} \vec{v}_{j}$.

$$
\begin{aligned}
& \text { So, } \vec{w}=T(\vec{x})=T\left(\sum_{j=1}^{n} a_{j} \vec{v}_{j}\right)=\sum_{j=1}^{n} a_{j} T\left(\vec{v}_{j}\right) \in \operatorname{Span}\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{n}\right)\right\} \\
& \therefore R(T) \subset \operatorname{Span}(T(\beta)) \quad \therefore R(T)=\operatorname{Span}(T(\beta))
\end{aligned}
$$

Example: $T: P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by:

$$
T(f)=\left(\begin{array}{cc}
f(0) & f(1) \\
\left.x^{2}\right\} \text { as basis of } p_{2(\mathbb{R})} & f^{\prime}(0)
\end{array}\right)
$$

Take $\beta=\left\{1, X, x^{2}\right\}$ as basis of $\left.P_{2}(\mathbb{R})(0), T\left(f^{\prime}\right)\right\}=\operatorname{Span}(T(\beta))$
We have: $R(T)=\operatorname{span}\left\{T(1), T(X), T\left(x^{2}\right)\right.$

$$
=\operatorname{span}\{\underbrace{\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)}_{\text {Lin. indep. }}\}
$$

$$
\Rightarrow \operatorname{Rank}(T)=3
$$

Theorem: (Rank-Nullity Theorem)
Let $V$ and $W$ be vector spaces sit. $V$ is finite-dimensional. Then for any linear transformation $T: V \rightarrow W$, we have:

$$
\text { nullity }(T)+\operatorname{Rank}(T)=\operatorname{dim}(V)
$$

Proof: Let $n=\operatorname{dim}(V)$ and $k=\operatorname{dim}(N(T)) \leq n$
Choose a basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ for $N(T)$ and extend it to a basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}, \vec{v}_{k+1}, \ldots, \vec{v}_{n}\right\}$ for $V$.
Claim: $S=\left\{T\left(\vec{v}_{k+1}\right), T\left(\vec{v}_{k+2}\right), \ldots, T\left(\vec{v}_{n}\right)\right\}$ is a basis for $R(T)$.
(1)

$$
\begin{aligned}
& R(T)=\operatorname{span}\left\{\underset{0}{T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), T\left(\vec{v}_{k}\right)} \underset{0}{0} T\left(\vec{v}_{n}\right)\right\} \\
& =\operatorname{span}\{\underbrace{T\left(\vec{v}_{k+1}\right), \ldots, T\left(\vec{v}_{n}\right)}_{S}\}=\operatorname{span}(S)
\end{aligned}
$$

(2) Now suppose $\exists b_{k+1}, b_{k+2}, \ldots, b_{n} \in F$ s.t.

$$
\sum_{i=k+1}^{n} b_{i} T\left(\vec{v}_{i}\right)=\overrightarrow{0}
$$

Then, by linearity, we have: $T\left(\sum_{i=k+1}^{n} b_{i} \vec{v}_{i}\right)=\overrightarrow{0}$

$$
\Rightarrow \quad \sum_{i=k+1}^{n} b_{i} \vec{v}_{i} \in N(T)
$$

$\therefore \quad \sum_{i=k+1}^{n} b_{i} \vec{v}_{i}=\sum_{i=1}^{k} c_{i} \vec{v}_{i}$ for some $c_{1}, \ldots, c_{k} \in F$.
But then:

$$
\sum_{i=1}^{k}\left(-c_{i}\right) \vec{v}_{i}+\sum_{i=k+1}^{n} b_{i} \vec{v}_{i}=\overrightarrow{0}
$$

$\because\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis for $V$ and so it is lin. ind.

$$
\begin{aligned}
\therefore \quad\left(-c_{i}\right) & =0 \text { for } i=1,2, \ldots, k \\
b_{i} & =0 \text { for } i=k+1, k+2, \ldots, n
\end{aligned}
$$

$\therefore S$ is lin. ind.
$\therefore S$ is basis for $R(T)$.

$$
\begin{aligned}
\therefore \quad & \operatorname{Nullity}(T)+\operatorname{Rank}(T) \\
= & \quad k+(n-k)^{\prime \prime} \\
= & n=\operatorname{dim}(V)
\end{aligned}
$$

