Lecture 5:
Zorn's Lemma
Let S be a partially ordered set. If every chain of S has
an upper bound in S, then S contains a maximal elements.

$$\frac{\text{Definition 1}}{\text{Partially ordered}} A \text{ partially ordered on a (non-empty) set S}$$

is a binary relation on S, denoted \leq , which satisfies:
• for $\forall s \in S, s \in S$
• if $s \leq s'$ and $s' \leq s'$, then $s \leq s''$.
 $\frac{\text{Definition 2}}{\text{If every elements in a partially ordered set S is comparable}}$
under \leq , then S is called a totally ordered set.

<u>Zorn's lemma</u> (adapted to 2048) Let V be a vector space. Let S be the collection of linearly independent Subsets of V. Then S is partially ordered under \subseteq . Assume every chain $[L_{\alpha}]_{\alpha \in I}$ of S has a upper bound.

(Obviously, What is an upper bound of the chain. We need to show that Uhat is linearly independent) Then: S has a maximal element.

Theorem:Every vector space has a basis.Proof:Let C be the collection of all Linearly independentSubsets of V.(We may consider a countable chain
for any chain {SiJiEI (SicSiC... for easier interpretation.)US:is also Linearly independent...US:is also Linearly independent...We claim that span(M) = V.If not,If
$$v \in V$$
Then:Multidist Linearly independent.But Mc MultidistLinearly independent.But Mc MultidistContradition to Zorn's lemma.But Mc Multidist.Contradition to Zorn's lemma.

-

We'll show that
$$Span(B) = Span(S) = V$$

It suffices to show that for any $\vec{v} \in S$, $\vec{v} \in Span(B)$.
If not, suppose $\vec{v} \notin Span(B)$.
Then: $\beta \cup \{\vec{v}\}$ is linearly independent subset of S .
Hence, $\beta \cup \{\vec{v}\} \in C$. But $\beta \cup \{\vec{v}\} \supseteq B$.
(ontradicting to the fact that β is maximal.
 $\vec{v} \in Span(B)$.
 $\vec{v} \in Span(B) = Span(S) = V$.
 $\vec{v} \in Span(B) = Span(S) = V$.

Remark: To find a basis inside a spanning set S, it's natural to find a minimal spanning
Set of V inside S.
If
$$M \subset S$$
 is minimal, then M is linearly independent.
If not, we can find $v \in M \ni Span(M \setminus \{v\}) = Span(M)$, contradicting the
minimality of M.
One might consider Zorn's lemma as follows:
Let C be the set of all spanning subarts of S, partially order C by reverse
inclusion. That is: $S_i \in C$ and $S_2 \in C$, $S_i \in S_2$ iff $S_i = S_2$.
For any chain $\{S_i\}_{i \in I}$ in C, $\bigcap_{i \in S_i}$ is the upper bound.
If $\bigcap_{i \in I} S_i \in C$, then Zorn's lemma tells us C has a maximal element (i.e. minimal
Spanning set)

A Married

ott

æ

12

-

BUT: OS; MAY NOT always in C!!

Linear Transformation
Definition: Let V and W be vector spaces over F.
A linear transformation from V to W is a map
$$T: V \rightarrow W$$

such that: (a) $T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y})$
(b) $T(a\vec{x}) = aT(\vec{x})$
for all $\vec{x}, \vec{y} \in V$, $a \in F$.

.

-

Proposition: Let T: V > W be a linear transformation. Then:
(i) T(
$$\vec{v}_v$$
) = \vec{v}_w
(ii) T($\sum_{i=1}^{n} a_i \vec{x}_i$) = $\sum_{i=1}^{n} a_i T(\vec{x}_i)$ $\forall \vec{x}_1, \vec{x}_2, ..., \vec{x}_n \in V$
(T) $T(\vec{v}_v) = T(\vec{v}_v + \vec{v}_v) = T(\vec{v}_v) + T(\vec{v}_v)$
 $\Rightarrow T(\vec{v}_v) = \vec{v}_w$. (Cancellation law)
(ii) Use math. induction (exercise)

Examples: For any vector spaces V and W, we have:
(a) The zero transformation
$$T_0: V \rightarrow W$$
 defined by $T_0(\vec{x}) := \vec{\sigma}_W$
(b) The identity transformation $I_V: V \rightarrow V$ defined by $I_V(\vec{x}) = \vec{x}$
(c) Let $A \in M_{mxn}(F)$ be a mxn matrice F .
Define: $L_A: F^n \rightarrow F^m$ as: $(F^n = \text{space of col vectors of } Size n)$
 $L_A(\vec{x}) \stackrel{\text{def}}{=} A\vec{x}$
 L_A is called the left multiplication by A .
 $T = M_{mxn}(F) \rightarrow M_{nxm}(F)$ defined by $T(A) \stackrel{\text{def}}{=} A^{\pm}(\text{transpow} \circ fA)$

•
$$T: P_n(IR) \rightarrow P_{n-1}(IR)$$
 defined by $T(f(x)) = f'(x)$
is a lin. transf.
• Let a and $b \in IR$, $a < b$. Then,
 $T: C(IR) \rightarrow IR$ defined by:
 $(space of continuous)$
 $functions$
 $T(f) \stackrel{def}{=} \int_a^b f(t) dt$

•
$$L_A: F^n \rightarrow F^m$$
 ($A \in M \max(F)$)
 $N(L_A) = N(A) = null space of A$
 $R(L_A) = \mathcal{C}(A) = col space of A$ (space of linear
 $combination of col vectors$
• For $T: Pn(IR) \rightarrow Pn_{H}(IR)$ defined by
 $T(f(x)) = f'(x)$, then:
 $N(T) = \{a_0 \in Pn(IR) : a_0 \in IR\}$
 $R(T) = Pn_H(IR)$

a given

anter 1

Now, let
$$\vec{u}, \vec{v} \in R(T)$$
 and $a \in F$.
Then: $\exists \vec{x}, \vec{y} \in V$ such that $\vec{u} = T(\vec{x})$ and $\vec{v} = T(\vec{y})$
So, $T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y}) = \vec{u} + \vec{v} \Rightarrow \vec{u} + \vec{v} \in R(T)$
 $T(a\vec{x}) = aT(\vec{x}) = a\vec{u} \Rightarrow a\vec{u} \in R(T)$
 $\therefore R(T)$ is a subspace of W .

1

$$\begin{array}{c} \underline{Remark:} \quad T: \lor \rightarrow \& is \quad onto \quad iff \quad R(T) = \& \& \\ & (follows \quad from \quad the \; def \;) \\ \hline \underline{Proposition:} \quad A \; linear \; transformation \quad T: \lor \rightarrow \& \; is \; one-to-one \\ & iff \quad N(T) \; = \; \overline{2} \; \overline{0} \; \overline{3} \; . \\ \hline \underline{Pf:} \; (Recap: \; One-to-one \; (\Rightarrow) \; " \; T(\overline{x}) = \; T(\overline{g}) \; \Rightarrow \; \overline{x} = \; \overline{g} \; " \\ (\Rightarrow) \quad If \; T \; is \; one-to-one \; (\Rightarrow) \; " \; T(\overline{x}) = \; T(\overline{g}) \; \Rightarrow \; \overline{x} = \; \overline{g} \; " \\ (\Rightarrow) \quad If \; T \; is \; one-to-one \; , \; then: \; for \; any \; \overline{x} \in \: N(T), \\ & \forall e \; have \; \quad T(\overline{x}) = \; \overline{0} \; \psi \; = \; T(\overline{0} \; \psi) \\ & \Rightarrow \; \quad \overline{x} = \; \overline{0} \; \psi \; \\ This \; implies \; \; N(T) = \; \overline{2} \; \overline{0} \; \psi \; \overline{3} \; . \end{array}$$

4

(
$$\Leftarrow$$
) Suppose N(T) = $\overline{2} \overline{0} \sqrt{3}$
Let $\overline{x}, \overline{y} \in V$ such that $T(\overline{x}) = T(\overline{y})$.
Then: $T(\overline{x}) - T(\overline{y}) = T(\overline{x} - \overline{y}) = \overline{0}$
This implies $\overline{x} - \overline{y} \in N(T) = \overline{0} \sqrt{3}$
 $\therefore \quad \overline{x} - \overline{y} = \overline{0} \sqrt{0} \text{ or } \overline{x} = \overline{y}$.
 $\therefore \quad \overline{1} \text{ is } 1 - 1$.

-

at 1

Example:
$$T: P_2(IR) \rightarrow M_{2x2}(IR)$$
 defined by:

$$T(f) = \begin{pmatrix} f(0) & f(1) \\ 0 & f'(0) \end{pmatrix}$$
Take $\beta = \{1, X, X^2\}$ as basis of $P_2(IR)$.
We have: $R(T) = \text{Span} \{T(1), T(X), T(X^2)\} = \text{Span}(T(\beta))$

$$= \text{Span} \{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \}$$

$$(in. indep.$$

2

.

-

-

()
$$R(T) = span \{T(\vec{v}_{1}), T(\vec{v}_{2}), T(\vec{v}_{n}), T(\vec{v}_{n})\}$$

$$= span \{T(\vec{v}_{R(1)}), \dots, T(\vec{v}_{n})\} = span(S)$$
(2) Now suppose $\exists b_{R(1)}, b_{R(2)}, \dots, b_{n} \in F \text{ s.t.}$

$$= \sum_{i=R(1)}^{n} b_{i} T(\vec{v}_{i}) = 0.$$
Then, by linearity, we have: $T(\sum_{i=R(1)}^{n} b_{i} \vec{v}_{i}) = 0$

$$\Rightarrow = \sum_{i=R(1)}^{n} b_{i} \vec{v}_{i} \in N(T)$$

12

 $\sum_{i=k+1}^{n} b_i \overline{v}_i = \sum_{i=1}^{k} C_i \overline{v}_i$ for some $C_1, \dots, C_k \in \overline{F}$. But then: $\sum_{i=1}^{k} (-C_i) \vec{v}_i + \sum_{i=k+1}^{n} b_i \vec{v}_i = \vec{0}$ '.' {v, ..., vng is a basis for V and so it is lin. ind. (-Ci) = 0 for i=1,2,..., k bi = 0 for i=k+1, k+2, ..., n S is lin. ind. i S is basis for R(T)

 $= \frac{1}{k} + (n-k)^{-1}$ n = dim(V)Ξ