Lecture 2:
Recap:
Definition: A vector space V is called finite-dimensional if it has a finite basis. The dimension of V, denoted as $\operatorname{dim}(V)$, is the number of vectors in a basis for V.
A vector space which is not finite-dimensional is called infinite -dimensional

Example: \mathbb{C}^{n} is n-dimensional

- $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is infinite-dimensional

Example: $P_{n}(F)$ where $F=F_{2}$ (binary field)
Then: $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis for $P_{n}(F)$.
$\therefore P_{n}(F)$ is $(n+1)$-dimensional.
\# of elements in $P_{n}(F)$ is 2^{n+1}

$$
\underset{\{0,1\}}{\left(a_{0}+a_{1} x+\ldots+\underset{\{0,1\}}{a_{n}} x^{n}\right.} \underset{\{0,1\}}{ }
$$

Finite-dimensional vector space with finitely many elements.

Direct Sum: Let U and W be subspaces of V.
Then: $u+W=\{\vec{x}+\vec{y}: \vec{x} \in U$ and $\vec{y} \in W\}$ is also a subspace of V (Check!)
Definition: V is said to be the direct sum of U and W, denoted by $V=U \oplus W$ if $V=U+W$ and $U \cap V=\{\overrightarrow{0}\}$.
Lemma: $V=U \oplus W$ of for $\forall \vec{v} \in V, \exists$! vectors $\vec{u} \in U$ and

$$
\vec{w} \in W \quad \rightarrow \quad \vec{v}=\vec{u}+\stackrel{\rightharpoonup}{w}
$$

Proof: (\Rightarrow) If $\vec{v} \in V$, then $\vec{v}=\vec{u}+\vec{w}$ for some $\vec{u} \in U$ and

$$
(\because V=u \oplus w)
$$

For uniqueness, let $\vec{v}=\vec{u}_{1}+\vec{\omega}_{1}=\vec{u}_{2}+\vec{\omega}_{2}$
Then: $\vec{u}_{1}-\vec{u}_{2}=\vec{w}_{2}-\vec{w}_{1} \in u \quad w=\{\overrightarrow{0}\} \quad \therefore \vec{u}_{1}-\vec{u}_{2}=\overrightarrow{0} \Rightarrow \vec{u}_{1}=\vec{u}_{2}$

$$
\vec{\omega}_{2}-\vec{\omega}_{1}=\overrightarrow{0} \Rightarrow \vec{\omega}_{1}=\vec{\omega}_{2}
$$

$(\Leftrightarrow) V=U+W$ is obvious.
Now, let $\vec{z} \in U \cap W$. $\exists!\vec{u}$ and $\vec{\omega} \rightarrow \vec{z}=\vec{u}+\vec{\omega}$.

$$
\therefore U \cap W=\left\{\begin{array}{l}
\overrightarrow{0}
\end{array}\right\}
$$

Examples: $F=\mathbb{R}$

- $\left\{\left(\begin{array}{l}x \\ y \\ 0\end{array}\right): x, y \in \mathbb{R}\right\}$
$\oplus\left\{\left(\begin{array}{l}0 \\ 0 \\ z\end{array}\right): z \in \mathbb{R}\right\}=\mathbb{R}^{3}$ is a direct sum.
- $\left\{\begin{array}{c}\text { Even functions } \\ f(-t)=f(t)\end{array}\right\} \oplus\left\{\begin{array}{c}\text { odd functions } \\ f(t)=-f(-t)\end{array}\right\}$ is a direct sum. $w_{1} \quad\{$ Space of all functions $\}$ " W_{2}
if $g \in w_{1} \cap w_{2}$, then: $f(t)=f(-t)=-f(t) \Rightarrow 2 f(t)=0 \Rightarrow f(t)=0$
$\therefore W_{1} \cap W_{2}=\{0\}$
$\begin{aligned} \therefore & W_{1} \cap W_{2}=\{0\} \\ & \{\text { Constant }\} \oplus\{\text { polynomials } p(t): p(0)=0\} \text { is a direct } \\ & \text { sum }\end{aligned}$
- \{Symmetric matrices: $\} \oplus\left\{\begin{array}{l}\text { Anti-symmetric } \\ \text { matrices: }\end{array}\right\}$ Space of all polynomials $\}$ $A^{\top}=A \quad \int_{\|}^{\oplus}\left\{\begin{array}{c}\text { matrices: } \\ A^{\top}=-A\end{array}\right\}$ is a direct sum. \{Space" of all matrices $\}$

Projection operators
Definition: Suppose $V=U \oplus W$. Define: $P: V \rightarrow U$ as follows: For any $\vec{v} \in V$, write $\vec{v}=\vec{u}+\vec{\omega}$ where $\vec{u} \in U$ and $\vec{\omega} \in W$.
Then: define: $P(\vec{v})=\vec{u}$
Remark: 1. P is well-defined
2. $P \circ P=P$

Definition V is said to be a direct sum of subspaces $u_{1}, u_{2}, \ldots, u_{k}$, denoted as $v=u_{1} \oplus u_{2} \oplus \ldots \oplus U_{k}$, if for $\forall \vec{v} \in V, \exists$! vectors $\vec{u}_{i} \in u_{i}(1 \leqslant i \leqslant k) \ni \vec{v}=\vec{u}_{1}+\vec{u}_{2}+\ldots+\vec{u}_{k}$.

Remark: $\cdot U_{1} \oplus \ldots \oplus U_{k}=\left(\cdots\left(\left(U_{1} \oplus U_{2}\right) \oplus U_{3}\right) \oplus \ldots \oplus U_{k}\right)$

- $V=U_{1} \oplus U_{2} \oplus \ldots \oplus u_{k}$ iff :
(1) $V=U_{1}+U_{2}+\ldots+U_{k}$
(2) $U_{r} \cap \sum_{i \neq r} U_{i}=\{\overrightarrow{0}\}$ for $1 \leqslant r \leqslant k$.

Dimension of direct sum
Theorem: Let V be a finite-dim vector space. $U_{1}, U_{2}, \ldots, U_{m}$ are subspaces of V. Then:

$$
\operatorname{dim}\left(U_{1} \oplus U_{2} \oplus \ldots \oplus U_{m}\right)=\sum_{i=1}^{m} \operatorname{dim}\left(U_{i}\right)
$$

Proof: Let $\beta_{i}=$ basis of u_{i} for $i=1,2, \ldots, m$.
Let $\beta=\beta_{1} \dot{\cup} \beta_{2} \dot{\cup} \ldots$ i β_{m} (disjoint union)
For $\forall \vec{v} \in u_{1} \oplus \ldots \oplus u_{m}, \exists!\vec{u}_{1} \in u_{1}, \vec{u}_{2} \in u_{2}, \ldots, \vec{u}_{m} \in u_{m} \rightarrow$

$$
\vec{v}=\vec{u}_{1}+\ldots+\stackrel{\rightharpoonup}{u}_{m} .
$$

Each \vec{u}_{i} can be written as a linear combination of elements in β_{i}.

$$
\therefore \quad S_{p a n}(\beta)=U_{1} \oplus \ldots \oplus U_{m}
$$

β is linear independent.

Then: each $a_{1}^{j} u_{1}^{j}+\ldots+a_{n}^{j} u_{n j}^{j}=\overrightarrow{0}$ for $\forall j$

$$
\Rightarrow \quad a_{1}^{j}=a_{2}^{j}=\ldots=a_{n_{j}}^{j}=0 \text { for } \forall j \text {. }
$$

$\therefore \quad \beta$ is linear independent.
$\therefore \quad \beta$ is a basis.

$$
\therefore \operatorname{dim}\left(U_{1} \oplus \ldots \oplus U_{m}\right)=|\beta|=\sum_{i=1}^{m} \operatorname{dim}\left(U_{i}\right) .
$$

Remark: In general,

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

(Homework!)

