Lecture 21:
Recap
Main Theorem: (Jordan Decomposition Theorem)
Let $A \in \operatorname{Mn\times n}(\mathbb{C})$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ (distinct) with corresponding multiplicities $m_{1}, m_{2}, \ldots, m_{k}$. Then:
(1) $\operatorname{dim}\left(K_{\lambda_{i}}\right)=m_{i}$
(2) $\mathbb{C}^{n}=K_{\lambda_{1}} \oplus K_{\lambda_{2}} \oplus \ldots \oplus K_{\lambda_{k}}$
(3) Each $K_{\lambda_{i}}$ has a basis $\beta_{i}=\gamma_{1, i} \cup \ldots \cup \gamma_{l, i}$ where every $\gamma_{m, i}$ is a cycle =

$$
\gamma_{m, i}=\left\{\left(A-\lambda_{i} I\right)^{p-1} \vec{x}_{r}\left(A-\lambda_{i} I\right)^{p-2} \vec{x}, \quad \ldots,\left(A-\lambda_{i} I\right) \vec{x}, \vec{x}\right\}
$$

Theoretical proof: $T: V \underset{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}(\text { distinct 'eigenvalus) })\right.}{ }$ (fy splits.
Last time
Claim l: $\left.\left(T-\lambda_{i} I\right)\right|_{k_{\lambda_{j}}}: K_{\lambda_{j}} \rightarrow K_{\lambda_{j}}$ is $1-1$ if $i \neq j$.
Claim 2: $\operatorname{dim}\left(K \lambda_{i}\right) \leqslant m_{i}=$ multiplicity of λ_{i} and

$$
k \lambda_{i}=N\left(\left(T-\lambda_{i} I\right)^{m_{i}}\right)
$$

Claim 3: $\quad V=K \lambda_{1}+K \lambda_{2}+\ldots+K \lambda_{\lambda_{K}}$
Pf: By M.1. on $k=\#$ of distinct eigenvalues.
When $k=1$, let $m=$ multiplicity of λ_{1}. Then, char poly of T By Caley-Hamilton Thm, $g(T)=\left(\lambda_{1} I-T\right)^{m}=0 \quad\left(\lambda_{1}{ }^{\prime \prime}-t\right)^{m}$.

$$
\therefore \quad K_{\lambda_{1}}=N\left(\left(T-\lambda_{1} \tau\right)^{m}\right)=V
$$

\therefore The is true for $k=1$.
Assume that the the is true for any lin. op. w/ fewer than k distinct eigenvalues,
Consider $T: V \rightarrow V$ with k distinct eigenvalue:

$$
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}
$$

Claim 4: Let $W=R\left(\left(T-\lambda_{k} I\right)^{m_{k}}\right)$ multiplicity of λ_{k}
Then: (1) $\left.T\right|_{W}: W \rightarrow W$ is well-defined. (exercise)
(2) T|w has $k-1$ distinct eigenvalues: $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k-1}$
(3) $\left.\left(T-\lambda_{k} I\right)^{m_{i}}\right|_{k_{\lambda_{i}}}=K_{\lambda_{i}} \rightarrow K_{\lambda_{i}}$ is onto $(i<k)$

Assume Clair 4 is true.

$$
\left(m=m_{k}\right)
$$

Let $\vec{x} \in V$. Then $=\left(T-\lambda_{k} Z\right)^{m} \vec{x} \in W$
By induction hypother, $\exists \vec{\omega}_{i} \in K_{\lambda_{i}^{\prime}}^{\prime}=$ generalized eigenspace of λ_{i} of Tl
such that

$$
\left(T-\lambda_{k} I\right)^{m} \stackrel{\rightharpoonup}{x}=\underset{\hat{\omega}_{1}+\stackrel{\rightharpoonup}{\omega}_{2}+\ldots}{ }+\stackrel{\rightharpoonup}{\omega}_{k-1}
$$

$H\left(\xi^{\circ}\right)$

$$
K_{\lambda_{i}}^{\prime} \subseteq K_{\lambda_{i}} \text { for } i<k
$$

$\left.\because\left(T-\lambda_{k} I\right)^{m}\right|_{k_{\lambda_{i}}}=k_{\lambda_{i}} \rightarrow k_{\lambda_{i}}$ is onto, then: for each $\stackrel{\rightharpoonup}{w}_{i} \in K_{\lambda_{i}}^{\prime}, \exists \stackrel{\rightharpoonup}{v}_{i} \in K_{\lambda_{i}}$ such that $\left(T-\lambda_{k} I\right)^{m}\left(\stackrel{v}{v}_{i}\right)=\stackrel{\rightharpoonup}{w}_{i}$

$$
\begin{aligned}
& \therefore\left(T-\lambda_{k} I\right)^{m}(\vec{x})=\left(T-\lambda_{k} I\right)^{m}\left(\vec{v}_{1}\right)+\ldots+\left(T-\lambda_{k} L\right)^{m}\left(\vec{v}_{k-1}\right) \\
& \Leftrightarrow\left(T-\lambda_{k} I\right)^{m}\left(\vec{v}-\vec{v}_{1}-\vec{v}_{2}-\ldots-\vec{v}_{k-1}\right)=\overrightarrow{0} \\
& \therefore \quad \hat{k}_{\lambda_{1}} \hat{k}_{\lambda_{2}} \quad \hat{k}_{\lambda_{k-1}} \\
& \therefore \vec{x}-\vec{v}_{1}-\vec{v}_{2}-\ldots-\vec{v}_{k-1} \in N\left(\left(T-\lambda_{k} I\right)^{m}\right)=k_{\lambda_{k}} \\
& \therefore \vec{x}=\vec{v}_{1}+\vec{v}_{2}+\ldots+\vec{v}_{k-1}+\vec{v}_{k} \\
& \hat{k}_{\lambda_{1}} \hat{k}_{\lambda_{2}} \quad \hat{k}_{\lambda_{k-1}} \quad \hat{k}_{\lambda_{k}}
\end{aligned}
$$

Proof of Claim 4
Note: $\left.\left(T-\lambda_{k} I\right)\right|_{k_{\lambda_{i}}}$ is $1-1$ and onto (if $\left.i<k\right)$
$\left.\Rightarrow\left(T-\lambda_{x} I\right)^{m}\right|_{k \lambda_{i}}$ is ass, onto.
Also, $E_{\lambda_{i}} \subseteq k_{\lambda_{i}} \subseteq W=R\left(\left(T-\lambda_{k} I\right)^{m}\right)$
$\therefore \lambda_{i}$ is an eigenvalue of $\left.T\right|_{w}$
 for $i<k$
$\therefore \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k-1}$ are eigenvalue of T / ω

Next, suppose λ_{c} is an eigenvalue of T / W.
Suppose $\left.T\right|_{W}(\vec{v})=\lambda_{k} \vec{v}$ for $\vec{v} \neq \overrightarrow{0}$ and $\left.\vec{v} \in W=R\left(t-\lambda_{k}\right)^{m}\right)$
Write $\vec{v}=\left(T-\lambda_{k} Z\right)^{m}(\vec{y})$.

$$
\begin{aligned}
\therefore & \overrightarrow{0}=\left(T-\lambda_{k} Z\right) \vec{v}=\left(T-\lambda_{k} I\right)\left(T-\lambda_{k} I\right)^{m}(\vec{y}) \\
\Rightarrow & \vec{y} \in k_{\lambda_{k}}=N\left(T-\lambda_{k} Z\right)^{m+1}(\vec{y}) \\
\therefore & \underbrace{\left(T-\lambda_{k} Z\right)^{m}(\vec{y})}_{\vec{u}}=\overrightarrow{0}
\end{aligned}
$$

Contradiction.

Claim 5: Let $\beta_{i}=$ ordered basis of $k_{\lambda_{i}}$.
Then: $\beta=\beta_{1} \cup \beta_{2} \cup \ldots v \beta_{k}$ is a disjoint union and a basis of V.
Pf Disjoint union: Let $\vec{x} \in \beta_{i} \cap \beta_{j}$ (if) $\subseteq K_{\lambda_{i}} \cap K_{\lambda}$

$$
\begin{aligned}
& \left(T-\lambda_{i} I\right)^{2}(\vec{x}) \neq \gamma \\
& \left(1-\lambda_{i} \tau\right)^{p}(\vec{x}) \neq \overrightarrow{0} \text { for } \forall p \text {. } \\
& \therefore \vec{x} \notin K_{\lambda_{i}} \quad \text { (Contradiction) }
\end{aligned}
$$

Basis: Let $\vec{x} \in V$. By (aim 3)

$$
\begin{aligned}
& \vec{x}=\vec{v}_{\hat{k}_{\lambda_{1}}}+\vec{v}_{\lambda_{2}}+\ldots+\vec{v}_{k} \quad \text { where } \vec{v}_{\lambda_{k}} \in k_{\lambda_{i}} \\
& \therefore V=\operatorname{span}(\beta) \\
& {\operatorname{span}\left(\beta_{1}\right)}_{n}^{\operatorname{span}\left(\beta_{2}\right)} \quad \operatorname{span}_{\prime \prime \prime}^{\prime \prime}\left(\beta_{k}\right)
\end{aligned}
$$

Let $q=|\beta|$. Then: $\operatorname{dim}(V) \leqslant q$
Let $d_{i}=\operatorname{dim}\left(K \lambda_{i}\right)$. Then $=q=\sum_{i} d_{i} \leq \sum_{i} m_{i}=\operatorname{dim}(V)$
$\therefore \operatorname{dim}(V)=q \quad \Rightarrow \quad \beta$ is a basis.

Claim 6: $\quad \operatorname{dim}\left(k \lambda_{i}\right)=m_{i}$
Pf: $\begin{aligned} \sum_{i} d_{i} & =\sum_{i} m_{i}\end{aligned} \begin{aligned} & \Rightarrow \sum_{i}\left(\frac{1 i}{m_{i}-d_{i}}\right)=0 \\ & \Rightarrow \operatorname{dim}(v) \quad m_{i}=d_{i} \text { fo } \forall i .\end{aligned}$

$$
V=k \lambda_{1} \oplus k_{\lambda_{2}} \oplus \ldots \oplus k_{\lambda_{k}}
$$

Claim 7: Let $\gamma_{1}=\left\{(t-\lambda I)^{m_{1}} \vec{v}_{1}, \ldots, \vec{v}_{1}\right\}$

$$
v_{q}=\left\{(T-\lambda I)^{m_{q}} \vec{v}_{q}, \ldots . \vec{v}_{q}\right\}
$$

If initial vectors are linearly independent, then:
$\gamma=\gamma_{1} \cup \gamma_{2} \cup \ldots \cup \gamma_{g}$ is disjoint union and it's linearly independent.
Pf: Disjoint union : exerase
Linear independere, Use M.1. on $n=\#$ of element in γ. When $n=1$, trivial
Assume the tho is true for 8 having less than a elements

When $|8|=n$, let

$$
\begin{aligned}
\gamma_{1}^{\prime} & =\left\{(T-\lambda I)^{m_{1}} v_{1}, \ldots,(T-\lambda I) v_{1}\right\} \\
& \vdots \\
\gamma_{q}^{\prime} & =\left\{(T-\lambda I)^{m_{q}} \vec{v}_{q}, \ldots(T-\lambda I) \vec{v}_{q}\right\}
\end{aligned}
$$

Let $\gamma^{\prime}=\gamma_{1}{ }^{\prime} \cup \gamma_{2}{ }^{\prime} \cup \ldots \vee \gamma_{q^{\prime}} . \quad \therefore\left|\gamma^{\prime}\right|=n-q$
Let $W=\operatorname{span}(\gamma)$. Let $U=\left.(T-\lambda L)\right|_{w}: W \rightarrow W$.
Then: $R(u)=\operatorname{span}\left(\gamma^{\prime}\right)$ (Check)
\because initial vectors of γ_{i} 's are L. Z.
$\therefore \gamma^{\prime}$ is L.E. (by induction hypothesis.)

$$
\therefore \quad \operatorname{dim}(R(u))=\left|\gamma^{\prime}\right|=n-q
$$

Also, $S=\left\{(T-\lambda I)^{m_{1}} \vec{v}_{1}, \ldots,(T-\lambda z)^{m_{q}}\left(\vec{v}_{\varepsilon}\right)\right\} \subseteq N\left(\left.(T-\lambda z)\right|_{\omega}\right)$

$$
\begin{aligned}
& \therefore \quad \operatorname{dim}(N(u)) \geqslant q \quad U=\left.(T-\lambda z)\right|_{w}: W \rightarrow W^{\prime \prime}(u) \\
& \therefore \quad n \geqslant \operatorname{dim}(w)=\operatorname{dim}(R(u))+\operatorname{dim}(N(u)) \\
& |\gamma| \\
& \therefore \quad \operatorname{dim}(w)=n, \quad|\gamma|=n \quad \text { and } \quad \operatorname{span}(\gamma)=W
\end{aligned}
$$

$\therefore \quad V$ is a basis of W and V is L. Z.

Claim 8: Suppose $\beta=$ basis of $V=$ disjoint union of cycler.
Then: (1) For each cycle γ in $\beta, W=\operatorname{span}(\gamma)$ is T-invariant and $\left[\left.T\right|_{W}\right]_{\gamma}=$ Jordan block.
(2) $\beta=J C$ basis for V,

Claim 9: Let λ =eigenvalue of T.
Then: K_{λ} has a basis $\beta=$ union of disjoint cycles w.r.t. Pf: By M.I. on $n=\operatorname{dim}\left(k_{\lambda}\right)$
when $n=1$, trivial.
Suppose the result is true for $\operatorname{dim}\left(k_{\lambda}\right)<n$.
When $\operatorname{dim}\left(K_{\lambda}\right)=n$. Let $u=\left.(T-\lambda I)\right|_{k_{\lambda}}: K_{\lambda} \rightarrow K_{\lambda}$
Then: $\operatorname{dim}(R(u))<\operatorname{dim}\left(K_{\lambda}\right)=n$

$$
\left(\because \operatorname{dim}\left(K_{\lambda}\right)=\operatorname{dim}(N(u))+\operatorname{dim}(R(u)), \quad \operatorname{dim}\left(E_{\lambda}\right) \geqslant 1\right)
$$

Let $K_{\lambda}{ }^{\prime}=$ generalized eigenspace corresponding to λ of $\left.T\right|_{R(u)}: R(u)$.

$$
R(u)=k_{\lambda}{ }^{\prime}
$$

By induction hypothesis, \exists disjoint cycles $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{q}$ of $\left.T\right|_{R(4) \rightarrow}$ $\gamma=\bigcup_{i=1}^{q} \gamma_{1}$ is a basis for $R(u)=k_{\lambda}^{\prime}$
Let $\gamma_{i}=\left\{\left(T_{R(u)-\lambda Z)^{m_{i}} \vec{x}_{i}}, \ldots, \vec{x}_{i}\right\}\right.$
Let $\vec{x}_{i}=u \vec{v}_{i}=(T-\lambda z) \vec{v}_{i}, \quad \vec{v}_{i} \tilde{k}_{\lambda}^{\prime}=R(u)$
Define: $\widetilde{\gamma}_{i}=\left\{(T-\lambda I)^{m_{i}+1}, \vec{v}_{i} \quad \vec{v}_{i} \in K_{\lambda}\right.$
Note: $\delta=\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{g}\right\}$ L.I. Subset of E_{λ}
Extend S to a basir of $E_{\lambda}=\left\{\vec{w}_{1}, \ldots, \vec{w}_{q}, \vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{s}\right\}$ By construction, $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}, \ldots, \widetilde{\gamma}_{q},\left\{\vec{u}_{1}\right\},\left\{\vec{u}_{2}\right\}, \ldots,\left\{\vec{u}_{s}\right\}$ are disjoint anion of cycles \rightarrow initial vectors ace L.T.
$\therefore \tilde{\gamma}=\bigcup_{i=1}^{q} \tilde{\gamma}_{i} \cup\left\{\vec{u}_{1}\right\}_{n} \ldots \ldots \cup\left\{\vec{u}_{s}\right\}$ is L. 1. Subset of $k \lambda$,
Now, we shim $\tilde{\gamma}$ is a basis of k_{λ}.
Supple $|\gamma|=r=\operatorname{dim}(R(u))$
Then: $\quad|\tilde{\gamma}|=r+q+s$
$\because\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{q}, \vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{S}\right\}$ is a basis of E_{11}

$$
\begin{array}{lll}
\therefore & \operatorname{dim}(N(u))=q+s . & N(u) \\
\therefore & \left.\left.N(T-\lambda z)\right|_{k \lambda}\right) \\
\therefore & \operatorname{dim}\left(k_{\lambda}\right)=\operatorname{dim}(R(u))+\operatorname{dim}(N(u))=r+q+1= & |\tilde{\gamma}|
\end{array}
$$

$\therefore \tilde{\gamma}$ is a basis for k_{λ}

Claim 10: T has JCF.

