Lecture 18:
Recall:
Theorem: Let T be a linear operator on a finite -dim complex inner product space. V. Then, T is normal iff \exists an orthonormal basis for V consisting of eigenvectors of T.

Example: Let H be the set of continuous complex-valued functions defined on $[0,2 \pi]$ equipped $w /$ the inner product

$$
\langle f, g\rangle: \frac{\operatorname{def}}{=} \frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t \text { for } f, g \in H \text {. }
$$

and the orthornormal subset:

$$
S=\left\{f_{n}(t): \frac{d e f}{=} e^{i n t}=n \in \mathbb{Z}\right\} \subset H
$$

inf dim
Let $V=\operatorname{span}(S)$ and consider the operators T and U on V defined by:

$$
\begin{aligned}
T(f) & =f_{1} \cdot f, \quad u(f)=f_{-1} \cdot f \\
& =e^{i t} f
\end{aligned}
$$

$$
\therefore T T^{*}=T U=I=T^{* \prime} T . \therefore T \text { is normal. }
$$

$$
\begin{aligned}
& \therefore T\left(f_{n}\right)=f_{n+1} \quad \text { and } u\left(f_{n}\right)=f_{n-1} \quad \forall n \in \mathbb{Z} \text {. } \\
& e^{i t} e^{\text {int }} \\
& e^{1 i(n+1) t} \\
& \begin{cases}1 & \text { if } m+1=n \\
0 & \text { otherwise }\end{cases} \\
& \text { Then: }\left\langle T\left(f_{m}\right), f_{n}\right\rangle=\left\langle f_{m+1}, f_{n}\right\rangle=\delta_{m+1, n}^{\prime \prime} \\
& \Rightarrow u=T^{*} \\
& \text { UT } \\
& =\delta_{m, n-1} \\
& =\left\langle f_{m}, f_{n-1}\right\rangle \\
& =\left\langle f_{m}, u\left(f_{n}\right)\right\rangle
\end{aligned}
$$

However, T has no eigenvectors.
If $f \in V$ is an eigenvector of T, say, $T(f)=\lambda f(\lambda \in \mathbb{C})$
Then, we write $f=\sum_{i=n}^{m} a_{i} f_{i}$, where $a_{m} \neq 0$

$$
\begin{aligned}
\therefore & \sum_{i=n}^{m} a_{i} f_{i+1}=T(f)=\lambda f=\sum_{i=n}^{m} \lambda a_{i} f_{i} \\
\Rightarrow f_{m+1} & =\frac{1}{a_{m}}\left(\lambda a_{n} f_{n}+\sum_{i=n+1}^{m}\left(\lambda a_{i}-a_{i-1}\right) f_{i}\right)
\end{aligned}
$$

Contradicting the fact that S is linearly independent.

Def: Let T be a linear operator on an inner product space
V. We say T is self-adjoint (Hermitian) if $T^{*}=T$.
An $n \times n$ real or complex matrix A is called self-adjoint
(or Hermitian) if $A^{*}=A$.
Lemma: Let T be a self-adjoint linear operator on a fin-dim inner product space V. Then:
(a) Every eigenvalue of T is real.
(b) Suppose V is real inner product space. Then, the char. poly of T splits over \mathbb{R}.

Proof: (a) Suppose $T(\vec{x})=\lambda \vec{x}$ for $\vec{x} \neq \overrightarrow{0}$.
Then: $T^{*}(\vec{x})=\bar{\lambda} \vec{x} \quad(\because T$ is normal)

$$
\begin{aligned}
& \therefore \lambda \vec{x}=T(\vec{x})=T^{*}(\vec{x})=\bar{\lambda} \vec{x} \\
& \therefore(\lambda-\bar{\lambda}) \vec{x}=\overrightarrow{0} \Rightarrow \lambda=\bar{\lambda} . \therefore \lambda \text { is real. }
\end{aligned}
$$

(b) Let $n=\operatorname{dim}(v), \beta$ be an orthonormal basis for V and let $A \stackrel{\operatorname{def}}{=}[T]_{\beta}$
Then: A is self-adjoint. Consider: $L_{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ By (a), the eigenvalues of L_{A} are real. By Fundamental Tum of Algebra, $f_{L_{A}}(t)$ splits into factors of the form $t-\lambda$ where λ is an eigenvalue of L_{A}.
$\because \lambda$ is real $\therefore f_{L_{A}}(t)$ splits over \mathbb{R}. But $f_{T}(t)=f_{L_{A}}(t)$. So, the result follows.

Theorem: Let T be a linear operator on a fin-dim real inner product space V. Then T is self-adjoint iff \exists orthonormal basis for V consisting of eigenvectors of T.
Proof: (\Rightarrow) Suppose T is self-adjoint. By the Lemma, the char poly of T splits over \mathbb{R}. By Schur's Theorem, \exists an orthonormal basis β for V s.t. $A \stackrel{\operatorname{def}}{=}[T]_{\beta}$ is upper triangular. But:

$$
A^{*}=\left([T]_{\beta}\right)^{*}=\left[T^{*}\right]_{\beta}=[T]_{\beta}=A
$$

So, A is both upper triangular and lower triangular. Hence, A is diagonal.
$\therefore \beta$ consists of eigenvectors of T.
(\Leftarrow) Suppose \exists orthurnormal basis β for V sit. $A=[T]_{\beta}$ is diagonal.
Then: $\left[T^{*}\right]_{\beta}=\left([T]_{\beta}\right)^{*}=A^{t}=A=[T]_{\beta}$

$$
\therefore \quad T^{*}=T
$$

$\therefore T$ is self-adjoint.

Def: Let T be a linear operator on finite-dim inner product space V over F. If $\|T(\vec{x})\|=\|\vec{x}\| \forall \vec{x} \in V$, then we call T is a unitary linear operator. (resp. orthogonal operator) if $F=\mathbb{C}$ (resp $F=\mathbb{R})$
Lemma: Let U be a self-adjoint linear operator on a fin-dim inner product span V. If $\langle\vec{x}, U(\vec{x})\rangle=0 \quad \forall \vec{x} \in V$, then $U=T_{0}=$ zero transf.

Pf: Choose an orthonormal basis β for V consisting of eigenvectors of U.
If $\vec{x} \in \beta$, then $U(\vec{x})=\lambda \vec{x}$ for some λ.

$$
\begin{aligned}
& 0=\left\langle\vec{x}, u\left(\vec{x}| \rangle=\langle\vec{x}, \lambda \vec{x}\rangle=\bar{\lambda}\langle\vec{x}, \vec{x}\rangle=\bar{\lambda}\|\vec{x}\|^{2}\right.\right. \\
& \quad \Rightarrow \quad \lambda=0 \\
& \therefore u(\vec{x})=0 \text { for } \quad \forall \vec{x} \in \beta \\
& \therefore u=T_{0}
\end{aligned}
$$

Tho: For a linear operator T on a fin-dim inner produd space V, the following are equivalent:
(a) $T T^{*}=T^{*} T=I$
(b) T preserves the inner produd on V, i.e.,

$$
\langle T(\vec{x}), T(\vec{y})\rangle=\langle\vec{x}, \vec{y}\rangle \quad \forall \vec{x}, \vec{y} \in V
$$

(c) $T\left(\beta_{n}\right) \stackrel{\operatorname{def}}{=}\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{n}\right)\right\}$ is an orthonormal basis $\left\{v_{1}^{\prime \prime}, v_{2}, \ldots, v_{n}\right\}$
for V for any orthonormal basis β for V
(d) \exists an orthonormal basis β for V s.t. $T(\beta)$ is an orthonormal basis for V.
(e) $\|T(\vec{x})\|=\|\vec{x}\|$ for $\forall \vec{x} \in V$

Proof. $(a) \Rightarrow(b):\langle T(\vec{x}), T(\vec{y})\rangle=\left\langle\vec{x}, T_{11}^{*} T(\vec{y})\right\rangle=\langle\vec{x}, \vec{y}\rangle$
(b) $\Rightarrow(c)$: Let $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ be an orthonormal basis for V Then. $\left\langle T\left(\vec{v}_{i}\right), T\left(\vec{v}_{j}\right)\right\rangle=\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=\delta_{i j} \stackrel{\operatorname{det}}{=} \begin{cases}1 & \text { if } i=j \\ 0 & \text { if }\end{cases}$ $\therefore T(\beta)$ is an orthonormal basis for V.
(c) $\Rightarrow(d)$: Obvious
(d) $\rightarrow(e)$: Let $\vec{x} \in V$, and $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}=0 . n$. basis for V.
$\vec{x}=\sum_{i=1}^{n} a_{i} \vec{v}_{i}$ for some $a_{1}, \ldots, a_{n} \in F . \Rightarrow\|\vec{x}\|^{2}=$ def $\langle\vec{x}, \vec{x}\rangle=\sum_{i=1}^{n}\left|a_{i}\right|^{2}$ (Check)
But $T(\beta)$ is 0.n. basis.

$$
\therefore\|T(\vec{x})\|^{2}=\left\|\sum_{i=1}^{n} a_{i} T\left(\vec{v}_{i}\right)\right\|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2} \quad \therefore\|T(\vec{x})\|=\|\vec{x}\|
$$

for $\forall \vec{x} \in V$
$(e) \Rightarrow(a): \quad \forall \vec{x} \in V, \quad\langle\vec{x}, \vec{x}\rangle=\|\vec{x}\|^{2}=\|T(\vec{x})\|^{2}=\langle T(\vec{x}), T(\vec{x})\rangle$
u $=\left\langle\vec{x}, T^{*} T(\vec{x})\right\rangle$
$\Rightarrow\left\langle\vec{x},\left(\begin{array}{c}\left(-T^{*} T\right. \\ \text { " } \\ \text { self-adjoint. }\end{array}\right.\right.$
By lemma, we know $I-T^{*} T=T_{0} \Rightarrow T^{*} T=I$
Similarly, we can show $T T^{*}=I$

Def: A matrix $A \in M_{n \times n}$ (尽) is called orthogonal if:
$A^{\top} A=A A^{\top}=I$ The set of orthogonal real matrices is denoted as $O(n)$
A matrix $A \in M_{n \times n}(\mathbb{C})$ is called unitary if:
$A^{*} A=A A^{*}=I$ the net of unitary complex matrices is denoted as $U(n)$
Remark: - T is unitary (or orthogonal) iff $\exists a_{n} 0 . n$. basis β
Sit. $[T]_{\beta}$ is unitary (resp. orthogonal).

$$
\left(\left[T^{*}\right]_{\beta}=\left([T]_{\beta}\right)^{*}\right)
$$

- Let $\vec{v}_{1}, \ldots, \vec{v}_{n} \in F^{n}$. Then: $A \stackrel{\operatorname{def}}{=}\left(\begin{array}{cccc}1 & \vec{v}_{1} & \vec{v}_{1} & \ldots \\ 1 & \vec{v}_{n}\end{array}\right) \in M_{n \times n}(F)$ is unitary (or orthogonal) iff $\beta=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is an 0.n. basis for $\mathbb{C}^{n} \quad\left(\operatorname{resp} \mathbb{R}^{n}\right)$

Thm: Let $A \in M_{n \times n}(\mathbb{C})$. Then: L_{A} is normal iff A is unitarily equivalent to a diagmel matrix.
(That is, $\exists P \in U(n)$ sit. $P^{*} A P$ is diagonal)
Pf: \Leftrightarrow Suppose L_{A} is normal. Then: \exists an $0 . n$. basis ρ_{1} of eigenvectors. for \mathbb{C}^{n}. sit. $\left[L_{A}\right]_{\beta}=P^{-1} A P \quad\left\{\vec{v}_{1}, \ldots, v_{n}\right\}$ is diagmal, where $P=\left(\begin{array}{lll}\frac{1}{v_{1}} & \vec{v}_{2} & \frac{1}{v_{n}} \\ 1\end{array}\right) \quad{ }^{\left[L_{A}\right]_{\beta_{s}^{\prime}}}{ }_{\text {stampeded ordered has u }}$
$\because P$ is unitary, $p^{x} p=p p^{*}=I \Rightarrow p^{-1}=p^{*}$.
(*) Obvious. Exercise.

Thm: Let $A \in M_{n \times n}((\mathbb{R})$. Then: A is symmetric of A is orthogonally equivalent to a diagonal matrix.
That is, $\exists P \in O(n)$ sit. $P^{\top} A P$ is diagmal.
egg.
Consider $A=\left(\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right)$. Then $\exists P \in O(3)$ s.t. $P^{t} A P$ is diagonal.
To find P explicitly, we first compute the eigenvalues of A :

$$
f_{A}(t)=(8-t)(2-t)^{2}
$$

So the eigenvalues are $\lambda=2$ and $\lambda=8$
For $\lambda=8,(1,1,1)$ is an eigenvector

For $\lambda=2,\{(-1,1,0),(-1,0,1)\}$ is a basis for the eigenspace E_{2} but it is $n=t$ orthogonal.
Applying the Gram-Schmidt process produces the orthogonal basis $\{(-1,1,0),(1,1,-2)\}$ of E_{2}.
Then an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of A is given by

$$
\left\{\frac{1}{\sqrt{2}}(-1,1,0), \frac{1}{\sqrt{6}}(1,1,-2), \frac{1}{\sqrt{3}}(1,1,1)\right\}
$$

which gives P as

$$
P=\left(\begin{array}{ccc}
-1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & -2 \sqrt{6} & 1 / \sqrt{3}
\end{array}\right)
$$

