Lecture 17:
Recall:
Let V be a finite-dim inner product space. Let T be a linear operator on V.
Then: \exists ! linear operator $T^{*}: V \rightarrow V$ such that :

$$
\langle T(\vec{x}), \vec{y}\rangle=\left\langle\vec{x}, T^{*}(\vec{y})\right\rangle \text { for } \forall \vec{x}, \vec{y} \in V
$$

T^{*} is called the adjoint of T.

Proposition: Let V be an inner product space. Let $T, U=V \rightarrow V$.
Then:
(a) $(T+U)^{*}=T^{*}+U^{*}$
(b) $(c T)^{*}=\bar{c} T^{*} \quad \forall c \in F$
(c) $(T U)^{*}=u^{*} T^{*}$
(d) $\left(T^{*}\right)^{*}=T$
(e) $I^{*}=I$

Proof: $\forall \vec{x}, \vec{y} \in V$
(a)

$$
\begin{aligned}
& \forall \vec{x}, \vec{y} \in V \\
&\left\langle\vec{x},(T+u)^{*}(\vec{y})\right\rangle=\langle(T+u)(\vec{x}), \vec{y}\rangle=\langle T(\vec{x}), \vec{y}\rangle+\langle u(\vec{x}, \overrightarrow{,}\rangle\rangle \\
&=\left\langle\vec{x}, T^{*}(\vec{y})\right\rangle+\left\langle\vec{x}, u^{*}(\vec{y})\right\rangle \\
& \Rightarrow(T+u)^{*}=T^{*}+u^{*} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\left\langle\vec{x},(c T)^{*}(\vec{y})\right\rangle & =\langle c T(\vec{x}), \vec{y}\rangle \\
& =c\langle T(\vec{x}), \vec{y}\rangle \\
\therefore(c T)^{*}=\bar{c} T^{*} & =\xrightarrow{c\left\langle\vec{x}, T^{*}(\vec{y})\right\rangle=\left\langle\vec{x}, \bar{c} T^{*}(\vec{y})\right\rangle}
\end{aligned}
$$

(c)

$$
\begin{aligned}
&\left\langle\vec{x},(T u)^{*}(\vec{y})\right\rangle=\langle T(u(\vec{x})), \vec{y}\rangle \\
&=\left\langle u(\vec{x}), T^{*} \vec{y}\right\rangle \\
&=\left\langle\vec{x}, u^{*} T^{*} \vec{y}\right\rangle \\
& \Rightarrow(T U)^{*}=u^{*} T^{*}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \langle\vec{x}, T(\vec{y})\rangle=\left\langle T^{*}(\vec{x}), \vec{y}\right\rangle=\left\langle\vec{x},\left(T^{*}\right)^{*}(\vec{y})\right\rangle \\
& \Rightarrow \quad T=T^{* *}
\end{aligned}
$$

(e). fillows from the definition.

$$
\begin{aligned}
& \langle\vec{x}, I(\vec{y})\rangle=\langle I(\vec{x}), \vec{y}\rangle \\
& \quad\langle\vec{x}, \vec{y}\rangle
\end{aligned}
$$

Remark: Let A and B be $n \times n$ matrices. Then:
(a) $(A+B)^{*}=A^{*}+B^{*}$
(d) $A^{* *}=A$
(b) $(C A)^{*}=\bar{c} A^{*}$
(e) $I^{*}=I$.
(c) $(A B)^{*}=B^{*} A^{*}$

Lemma: Let $T: V \rightarrow V$ be a linear operator on a finite-dim inner product space V. If T has an eigenvector, then so does T^{*} 。
Pf: Suppose $\vec{v} \in V,\{\overrightarrow{0}\}$ is an eigenvector of T with eigenvalue λ.

$$
\begin{aligned}
& \text { eigenvalue } \quad \text { Then: } \forall \vec{x} \in V \text {, we have: } \\
& 0=\langle\overrightarrow{0}, \vec{x}\rangle=\langle(T-\lambda I)(\vec{v}), \vec{x}\rangle=\langle\vec{v}, \underbrace{\left(T^{*} \bar{\lambda} I\right)}_{\left.R(T-\lambda I)^{*}(\vec{x})\right\rangle} \\
& \Rightarrow \vec{v} \in R\left(T^{*}-\bar{\lambda} I\right)^{\perp} \cdot \quad \text { So, } \operatorname{dim}\left(R\left(T^{*}-\bar{\lambda} I\right)\right)<\operatorname{dim}(V)
\end{aligned}
$$

$$
T^{*}-\bar{\lambda} I
$$

$$
\Rightarrow \operatorname{dim}\left(N\left(T^{*}-\bar{\lambda} I\right)\right)>0
$$

$\therefore T^{*}$ has an eigenvector with eigenvalue $\bar{\lambda}$.

Thy (Schur) Let T be a lin. operator on a finite-dim inner product space. Suppose the char. poly of T splits. Then: \exists an orthonormal basis β for V sit. $[T]_{\beta}$ is upper triangular.
Pf: We prove by induction on $n=\operatorname{dim}(V)$.
The $n=1$ case is obvious.
[Assume the statement holds for lin. operators defined on $(n-1)$-dim inner product space, whose char. poly splits By lemma, T^{*} has a unit eigenvector \vec{z}. Let $W: \stackrel{\text { def }}{=} \operatorname{span}\{\vec{z}\}$ and suppose $T^{*}(\vec{z})=\lambda \vec{z}$.

Claim: W^{\perp} is T-invariant.
Pf: Let $\vec{y} \in W$ and $\vec{x}=c \vec{z} \in W$. Then:

$$
\begin{aligned}
\langle T(\vec{y}), \vec{x}\rangle=\langle T(\vec{y}), c \vec{z}\rangle & =\left\langle\vec{y}, c T^{*}(\vec{z})\right\rangle \\
& =\langle\vec{y}, c \lambda \vec{z}\rangle \\
& =\bar{c} \bar{\lambda}\langle\vec{y}, \vec{z}\rangle=0 \\
\therefore T(\vec{y}) \in W^{\perp} . & w^{\perp} w
\end{aligned}
$$

Now, $f_{T_{W^{\perp}}}(t) \mid f_{T}(t) \Rightarrow f_{T_{W^{\perp}}}(t)$ splits. (1)
Also, $\operatorname{dim}\left(w^{\perp}\right)=n-1$ (2)
\therefore Induction hypothesis gives an orthonormal basis γ for W^{\perp} st. $\left[T_{W^{\perp}}\right]_{8}$ is upper triangular..

Then. $\beta \stackrel{\operatorname{def}}{=} \gamma \cup\{\vec{z}\}$ is orthonormal basis s.t.
$W^{\perp} \omega$
is upper triangular

Assume T is diagonalizable and assume \exists an orthonormal basis β for V s.t. $[T]_{\beta}$ is diagonal.
Then: $\left[T^{*}\right]_{\beta}=\left([T]_{\beta}\right)^{*}$ is also diagonal

$$
\begin{aligned}
\because\left([T]_{\beta}\right)^{*}\left([T]_{\beta}\right) & =\left([T]_{\beta}\right)\left([T]_{\beta}\right)^{*} \\
{\left[T^{*}\right]_{\beta}[T]_{\beta} } & =[T]_{\beta}\left[T^{*}\right]_{\beta}^{\prime \prime} \\
{\left[T^{*} T\right]_{\beta} } & =\left[T T^{*}\right]_{\beta} \\
\Rightarrow T^{*} T & =T T^{*}
\end{aligned}
$$

Definition: Let V be an inner produce space. We say that a linear operator $T: V \rightarrow V$ is normal if $T^{*} T=T T^{*}$.

An $n \times n$ real or complex matrix A is called normal if

$$
A^{*} A=A A^{*}
$$

Example: Unitary (when $F=\mathbb{C}$) or orthogonal (when $F=\mathbb{R}$) if $T^{*} T=T T^{*}=I$

- Hermitian (or self-adjoint) if $T^{*}=T$
- Skew - Hermitian (or anti-self-adjoint) if $T^{*}=-T$.

Are normal!

Proposition: Let V be an inner product space, and let T be a normal linear operator on V. Then: we have:
(a) $\|T(\vec{x})\|=\left\|T^{*}(\vec{x})\right\| \quad \forall x \in V$
(b) $T-c I$ is normal $\forall c \in F$.
(c) If $T(\vec{x})=\lambda \vec{x}$, then: $T^{*}(\vec{x})=\bar{\lambda} \vec{x}$
(d) If λ_{1} and λ_{2} are distinct eigenvalues of T with corresponding eigenvectors \vec{x}_{1} and \vec{x}_{2}, then:
\vec{x}_{1} and \vec{x}_{2} are orthogonal.

Proof: (a) $\forall \vec{x} \in V$, we have:

$$
\begin{aligned}
\|T(\vec{x})\|^{2}=\langle T(\vec{x}), T(\vec{x})\rangle & =\left\langle T^{*} T(\vec{x}), \vec{x}\right\rangle \\
& =\left\langle T T^{*}(\vec{x}), \vec{x}\right\rangle=\left\langle T^{*}(\vec{x}), T^{*}(\vec{x})\right\rangle \\
& =\left\|T^{*}(\vec{x})\right\|^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
(T-c I)(T-c I)^{*} & =(T-c I)\left(T^{*}-\bar{c} I\right)=\| \\
& =T T^{*}-c T^{*}-\bar{c} T+c \bar{c} I \\
& =T^{*} T-c T^{*}-\bar{c} T+c \bar{c} I \\
& =(T-c I)^{*}(T-c I) .
\end{aligned}
$$

(c) Suppose $T(\vec{x})=\lambda \vec{x}$. Let $U=T-\lambda I$. Then, U is normal (by (b)) and $U(\vec{x})=\overrightarrow{0}$. So, by (a),

$$
0=\|u(\vec{x})\|=\left\|u^{*}(\vec{x})\right\|=\left\|\left(T^{*}-\bar{\lambda} I\right)(\vec{x})\right\| \Leftrightarrow T^{*}(\vec{x})=\bar{\lambda} \vec{x}
$$

(d) By (c), we have:

$$
\begin{aligned}
& \lambda_{1}\left\langle\vec{x}_{1}, \vec{x}_{2}\right\rangle=\left\langle T\left(\vec{x}_{1}\right), \vec{x}_{2}\right\rangle=\left\langle\vec{x}_{1}, T^{*}\left(\vec{x}_{2}\right)\right\rangle \\
&=\left\langle\vec{x}_{1}, \vec{\lambda}_{2} \vec{x}_{2}\right\rangle \\
& \lambda_{1} \neq \lambda_{2} \\
&=\lambda_{2}\left\langle\vec{x}_{1}, \vec{x}_{2}\right\rangle \\
& \Leftrightarrow \quad{ }^{0} \\
& \Leftrightarrow \quad\left(\lambda_{1}-\lambda_{2}\right)\left\langle\vec{x}_{1}, \vec{x}_{2}\right\rangle=0 \\
& \Rightarrow \quad\left\langle\vec{x}_{1}, \vec{x}_{2}\right\rangle
\end{aligned}
$$

Theorem: Let T be a linear operator on a finite-dim complex inner product space. V^{\prime}. Then, T is normal iff \exists an orthonormal basis for V consisting of eigenvectors of T.

Proof: (\Leftarrow) Obvious.
(\Rightarrow) Suppose T is normal.
By the Fundamental Them of algebra, $f_{T}(t)$ splits.
\therefore Schur's Theoren gives us an orthornormal basis $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ sit. $[T]_{\beta}$ is upper triangular.
$\left.[T]_{\beta}=\left(-2\left(v_{1}\right)\right)_{p} / 1 / 1\right)$. In particular, \vec{v}_{1} is an eigenvector of T.

Suppose that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k-1}$ are eigenvectors of T and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k-1}$ are their corresponding eigenvalues
We claim that \bar{v}_{k} is an eigenvector of T (so dy induction, all vectors in β are eigenvectors of T)
Now, $T\left(\vec{v}_{j}\right)=\lambda_{j} \vec{v}_{j} \Rightarrow T^{*}\left(\vec{v}_{j}\right)=\bar{\lambda}_{j} \vec{v}_{j}$ for $j=1,2, \ldots, k-1$ $\because A:=\operatorname{def}[T]_{\beta}$ is upper triangular

$$
T\left(\vec{v}_{k}\right)=A_{1 k} \vec{v}_{1}+A_{2 k} \vec{v}_{2}+\ldots+A_{k k} \vec{v}_{k}
$$

But: $A_{j k}=\left\langle T\left(\vec{v}_{k}\right), \vec{v}_{j}\right\rangle=\left\langle\vec{v}_{k}, T^{*}\left(\vec{v}_{j}\right)\right\rangle=\left\langle\vec{v}_{k}, \bar{\lambda}_{j} \vec{v}_{j}\right\rangle$

$$
=\lambda_{j}\left\langle\vec{v}_{k}, \vec{v}_{j}\right\rangle
$$

for $j=1,2, \ldots, k-1 . \quad \therefore T\left(\vec{v}_{k}\right)=A_{k k} \vec{v}_{k}$

$$
\therefore \vec{v}_{k}=\text { eigenvector of } T \text {. }
$$

