Lecture 12: Recall:
Prop: Let T be a linear operator on a vector space V and let λ be an eigenvalue of T. Then, $\vec{v} \in V$ is an eigenvector of T corresponding to λ iff:

$$
\vec{v} \in N(T-\lambda I v) \backslash\{\overrightarrow{0}\}
$$

Def: Let T be a linear operator on a vector space V and let λ be an eigenvalue of T.
Then: the subspace $E_{\lambda}:$ def $N\left(T-\lambda I_{V}\right)=\{\vec{x} \in V: T(\vec{x})=\lambda \vec{x}\}$ c V is called the eigenspace of T corresponding to λ.
Eigenspaces of a matrix $A \in M_{n \times n}(F)$ is defined as those of L_{A}

Prop: Let T be a linear operator on a vector space V, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues of T, If $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ are eigenvectors of T corresponding to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ respectively, then: $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ are linearly independent.

Corollary: A linear operator T on an n-dim vector space V which has n distinct eigenvalues is diagonalizable.

Proof: Let $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ be the eigenvectors corresponding to n distinct eigenvalues. Then, the prop. says $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is lin. independent, $\therefore\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ forms a basis. of eigenvectors. $\therefore T$ is diagonalizable.

Def: Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial $f(t)$. The algebraic multiplicity of λ, denoted $\mu_{T}(\lambda)$ or $\mu_{A}(\lambda)$ is the multiplicity of λ as a zeno of $f(t)$, i.e. the largest positive integer k st. $(t-\lambda)^{k} \mid f(t)$.

Example: $\cdot 1$ is eigenvalue of $I_{V}: V \rightarrow V$ with $\mu_{I_{V}(1)}=\operatorname{dim}(v) \quad \beta \quad \beta$

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 4 \\
0 & 0 & 5
\end{array}\right) \quad f_{A}(t)=(3-t)^{2}(5-t) \\
& \mu_{A}(3)=2, \quad \mu_{A}(5)=1
\end{aligned}
$$

Prop: Let T be a linear operator on a finite-dim vector space V and let λ be an eigenvalue of T with algebraic multiplicity $\mu_{T}(\lambda)$. Then:

$$
1 \leqslant \operatorname{dim}\left(E_{\lambda}\right) \leqslant \mu_{T}(\lambda)
$$

We call $\gamma_{T}(\lambda) \stackrel{\operatorname{def}}{=} \operatorname{dim}\left(E_{\lambda}\right)$ the geometric multiplicity of λ.
Proof: Choose an ordered basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ for E_{λ} and extend it to an ordered basis $\beta=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}, \vec{v}_{p+1}, \ldots, \vec{v}_{n}\right\}$ for V.

$$
=\left(\begin{array}{l|l}
\lambda I_{p} & B \\
\hline O & C
\end{array}\right)^{\prime}
$$

$$
\begin{aligned}
& \Rightarrow f_{T}(t)=\operatorname{det}\left(\begin{array}{c|c}
(\lambda-t) I_{p} & B \\
\hline 0 & C-t I_{n-p}
\end{array}\right) \\
&=\operatorname{det}\left((\lambda-t) I_{p}\right) \operatorname{det}\left(C-t I_{n-p}\right) \\
&=(\lambda-t)^{p} \operatorname{det}\left(c-t I_{n-p}\right) \\
& \therefore \quad(\lambda-t)^{p} \mid f_{T}(t) \\
& \therefore \quad \mu_{T}(\lambda) \geqslant p=\gamma_{T}(\lambda)
\end{aligned}
$$

Lemma: Let T be a linear operator, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ distinct eigenvalues of T. For each $i=1,2, \ldots, k$, let $\vec{v}_{i} \in E_{\lambda_{i}}$.
If $\vec{v}_{1}+\vec{v}_{2}+\ldots+\vec{v}_{k}=\overrightarrow{0}$, then $\vec{v}_{i}=\overrightarrow{0}$ for all i.
Proof: If not, say
 $\vec{v}_{1}, \ldots, \vec{v}_{s} \neq \overrightarrow{0}$
then:

$$
\begin{aligned}
& \text { hen: } \\
& \vec{v}_{1}+\vec{v}_{2}+\ldots+\vec{v}_{s}=\overrightarrow{0} \\
& \frac{y_{0}}{\overrightarrow{0}} \\
& \frac{\pi}{0}
\end{aligned}
$$

It contradicts to ow previous proposition that $\vec{v}_{1}, \ldots, \vec{v}_{s}$ must be lin. independent.

Proposition: Let T be a linear operator, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues of T. For each $i=1,2, \ldots, k$, let $S_{i} \subset E_{\lambda_{i}}$ be a finite linearly independent subset. Then:
$S=S_{1} \cup S_{2} \cup \ldots \cup S_{k}$ is a linearly independent subset of V.
Proof: Write $S_{i}=\left\{\vec{v}_{i 1}, \vec{v}_{i 2}, \ldots, \vec{v}_{i_{i}}\right\}$ for $i=1,2, \ldots, k$.
Suppose $\exists a_{i j} \in F$ for $1 \leq j \leq n_{i}$ and $1 \leq i \leq k$ such that

$$
\sum_{i=1}^{k}\left(\sum_{j=1}^{n_{i}} a_{i j} \vec{v}_{i j}=\overrightarrow{0}\right.
$$

Then: $\quad \begin{aligned} & \pi_{1} E_{i}+w_{2}+\ldots+w_{i} \in E_{\lambda_{i}}=\overrightarrow{0} \\ & w_{1}+w_{i}\end{aligned} \Rightarrow w_{i}=\sum_{j=1}^{n_{i}} a_{i j} \vec{v}_{i j}=\overrightarrow{0}$

Then: $a_{i j}=0$ for all i and j (for S_{i} are lin. independent for all i.
$\therefore S_{1} \cup S_{2} \cup \ldots \cup S_{k}$ is linearly independent.

Theorem: Let τ be a linear operator on a finite dimensional vector space V such that the characteristic polynomial splits.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues of T.
Then:
(a) T is diagonalizable iff: $\mu_{T}\left(\lambda_{i}\right)=\gamma_{T}\left(\lambda_{i}\right)$ for $i=1,2, \ldots, k$
(b) If T is diagonalizable and β_{i} is a_{n} ordered basis for $E_{\lambda_{i}}$ for each i, then $=\beta:=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{k}$ is an ordered basis for V consisting of eigenvectors. (so that $[T]_{\beta}$ is a diagonal matrix)

Proof: Write $n=\operatorname{dim}(V)$, and $m_{i}=M_{T}\left(\lambda_{i}\right)$ and $d_{i}=\gamma_{T}\left(\lambda_{i}\right)$ for all $i . \operatorname{dim}\left(E \lambda_{i}\right)$
Suppose T is diagonalizable and β is a basis for V consisting of eigenvectors of T.

$$
\left(e . g . \quad \beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}, \ldots, \vec{v}_{n}\right\}\right)
$$

For each i, let $\beta_{i}=\beta \cap E_{\lambda_{i}}$ and $n_{i} \stackrel{\text { def }}{=} \# \beta_{i}$
Then: $n_{i} \leqslant d_{i}=\operatorname{dim}\left(E_{\lambda_{i}}\right) \quad\left(\because \beta_{i}\right.$ is lin. independent)
Also, $d_{i} \leqslant m_{i}$ (last lecture)
So, we have $n_{i} \leqslant d_{i} \leqslant m_{i}$ for all i.

$$
\begin{aligned}
& \therefore \quad n=\sum_{i=1}^{k} n_{i} \leqslant \sum_{i=1}^{K} d_{i} \leqslant \sum_{i=1}^{k} m_{i}=n=\operatorname{dim}(V) \\
& \therefore \quad \sum_{i=1}^{k} d_{i}-\sum_{i=1}^{k} n_{i}=0 \Leftrightarrow \sum_{i=1}^{k}\left(d_{i}-n_{i}\right)=0 \\
& \therefore \quad \sum_{i=1}^{k} m_{i}-\sum_{i=1}^{k} d_{i}=0 \Leftrightarrow \sum_{i=1}^{k}\left(m_{i}-n_{i} \text { for all } i\right. \\
& \therefore\left.\Rightarrow d_{i}\right)=0 \\
& \operatorname{dim}_{i}\left(E_{\lambda_{i}}\right)
\end{aligned}
$$

$$
\therefore n_{i}=d_{i}^{\prime \prime}=m_{i} \text { for all } i
$$

(So, β_{i} is a basis of $E_{\lambda_{i}}$)

Conversely, suppose $m_{i}=d_{i} \forall i$.
For each i, let β_{i} be the ordered basis of $E_{\lambda}{ }_{i}$ and let $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{k}$.
Then: from previous proposition, we know β is linearly independent.
But $\# \beta=\sum_{i=1}^{k} d_{i}=\sum_{i=1}^{k} m_{i}=n=\operatorname{dim}(V)$
$\therefore \beta$ is a basis for V of eigenvectors

$$
\begin{aligned}
& \left|\beta_{1}\right|+\left|\beta_{2}\right|+\ldots+\left|\beta_{k}\right| \\
& \operatorname{dim}\left(E_{\lambda_{1}}\right) \quad \operatorname{dim}_{n}\left(E_{\lambda_{2}}\right) \quad \operatorname{dim}_{\|}\left(E_{\lambda_{k}}\right)
\end{aligned}
$$

$\therefore T$ is diagonalizable.
 then $S_{1} \cup S_{2} \cup \ldots \cup S_{k}$ is \mathbb{L}^{\prime}. . ??

