- Definition of vector spaces: Try to think about some examples of vector spaces
- Definition of subspaces: Try to think about some examples of subspaces, why is it important?
- What is the linear combination? What is a Spanning set? What is linearly independent? What is the intuitive meaning of linearly dependence? How to check linearly independence?
-What is the definition of basis? What is the meaning of dimension?
-What is the Replacement Theorem? What is the geometric picture of the theorem?
- Try to recall how we can compute RREF? How to compute inverse? How to find the solution set of a linear system? How to determine the dimension of the solution set? What is null-space? What is column space?

Lecture 1: Vector spaces
Field
Definition: A field is a set F along with two binary operations: + (addition) and . (multiplication) such that:

- For $\forall x, y \in F, x+y=y+x$ and $x \cdot y=y \cdot x$
- For $\forall x, y, z \in F,(x+y)+z=x+(y+z)$ and $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
- For $\forall x, y, z \in F, x \cdot(y+z)=x \cdot y+x \cdot z$
- \exists ! element $0 \in F \quad \ni \quad \forall x \in F, x+0=x$
- \exists ! element $1 \in F \quad \ni \quad \forall x \in F, x \cdot 1=x$
- For $\forall x \in F, \exists$ an element $(-x) \in F \Rightarrow x+(-x)=0$
- For $\forall x \in F$ (excluding $x=0$), \exists an element $x^{-1} \in F \rightarrow x \cdot x^{-1}=1$

Remark: We often write $x y$ for $x \cdot y$

- If F is finite, we say it is a finite field

Examples of field

1. $\left.\left.\quad \begin{array}{l}F=\mathbb{R} \\ \text { 2. }\end{array}\right\}=\mathbb{C} \quad\right\}$ Most often considered in Math 2048.
2. $F=\mathbb{C}$
3. $F=\{$ Rational numbers $\}=\{p / q: p, q \in \mathbb{Z}\}$
4. Finite field of order p (where p is a prime number)

Define $F_{p}=\{0,1,2, \ldots, p-1\}$ and +1 . are defined as:

+ : for $\forall x, y \in F_{p}, x+y$ are performed modulo P.
That is, $x+y$ is the remainder of $(x+y) / p$
- : for $\forall x, y, \in F_{p}, x \cdot y$ is the remainder of $x \cdot y / p$.
$F_{2}=\{0,1\}$ is the binary field (important for information theories)

Vector Space
Goal: Build an abstract space (space of objects) simulating \mathbb{R}^{n} or \mathbb{C}^{n} (with addition and multiplication/scaled)
Definition: A vector space over F is a set V equipped $w /$ two operations :

$$
\begin{aligned}
& \text { two operations: } \\
& \left.\begin{array}{l}
\text { (addition) }+: V \times V \rightarrow V, \\
\left(\begin{array}{c}
\text { Scalar } \\
\text { multiplication) })
\end{array}\right.
\end{array}\right)=\vec{F} \times V \rightarrow V, \quad \begin{array}{l}
(\vec{x}, \vec{y}) \mapsto \vec{x}+\vec{y} \in V \\
(a, \vec{x}) \mapsto a \vec{x} \in V \\
\vec{F}
\end{array}
\end{aligned}
$$

satisfying 8 properties:

$$
\begin{aligned}
& \text { (VSI): } \vec{x}+\vec{y}=\vec{y}+\vec{x} \quad \forall \vec{x}, \vec{y} \in V \\
& +\left\{\begin{array}{l}
(\text { VSI }: x+y=y+x \quad \forall x, y \in V \\
(\text { VS2 })= \\
(\text { VS3 }): \\
(\text { VS } 4): \vec{y})+\vec{z}=\vec{x}+(\vec{y}+\vec{z}) \quad \forall \vec{x}, \vec{y}, \vec{z} \in V \\
\text { s.t. } \quad \vec{x}+\overrightarrow{0}=\vec{x} \quad \forall \vec{x} \in V \\
\text { (V) } \exists \vec{y} \in V \text { s.t. } \vec{x}+\vec{y}=\overrightarrow{0} \quad \text { (inverse) }
\end{array}\right. \\
& \left\{\begin{array}{l}
(\text { VS5 })=\frac{1}{n} \vec{x}=\vec{x} \quad \forall \vec{x} \in V \\
(\text { VS } 6)=(a b) \vec{x}=a(b \vec{x}) \quad \forall a, b \in F, \forall \vec{x} \in V
\end{array}\right. \\
& + \begin{cases}(V S 7): & \left.\overrightarrow{\hat{F}} \underset{\hat{N}}{ } \vec{N}_{\hat{x}}+\vec{y}\right)=a \vec{x}+a \vec{y} \quad \forall a \in F, \forall \vec{x}, \vec{y} \in V \\
(V S 8): & (a+b) \vec{x}=a \vec{x}+b \vec{x} \quad \forall a, b \in F, \quad \forall \vec{x} \in V\end{cases}
\end{aligned}
$$

Remark: an element in F is called scalar. an element in V is called vector.

Examples of vector spaces

$$
\begin{aligned}
& F^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{j} \in F \text { for } j=1,2, \ldots, n\right\} w / \\
& \left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
& a\left(x_{1}, \ldots, x_{n}\right)=\left(a x_{1}, a x_{2}, \ldots, a x_{n}\right)
\end{aligned}
$$

- $M_{m \times n}(F)=\{m \times n$ matrices $w l$ entries in $F\}$ $w /$ matrix addition and scalar multiplication
- $P(F)=\{$ polynomials w/ coefficients in $F\}$ $w /$ polynomial addition and scalar multiplication.

$$
\cdot F^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{j} \in F, j=1,2, \ldots\right\}
$$ $w /$ componeril-wise addition and scalar multiplication

- Sym $\operatorname{Son}_{n \times n}(F)=\left\{n \times n\right.$ symmetric $\begin{array}{l}\left.\text { matrices } A w / \text { entries in } F=A^{\top}=A\right\}\end{array}$
- Let S be any non-empty set.

Then: $\mathcal{F}(S, F)=\{$ functions $f: S \rightarrow F\}$
is a vector space over F under:

$$
\begin{aligned}
& \tilde{F}(S, F) \tilde{F}(S, F) \\
& (\underset{\hat{F}}{\operatorname{a}} f)(s) \stackrel{\text { def }}{=} a f(s) \text {. }
\end{aligned}
$$

- \mathbb{C} is a vector space over $F=\mathbb{C}$

Question: Is $V=\mathbb{R}$ a vector space over $F=\mathbb{C}$??

- Consider the differential equation:

$$
\text { (x) } \frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=0 \quad(a, b \in \mathbb{R})
$$

Let S be the set of twice differentiable functions on \mathbb{R} satisfying (x).
Then S is a vector space under usual addition and Scalar multiplication is a vector space.

Proposition: Let V be a vector space over F. Then:
(a) The element $\overrightarrow{0}$ in (VS3) is unique, called zero vector
(b) $\forall \vec{x} \in V$, the element \vec{y} in (VS4) is unique, called the additive inverse (Denoted as $-\vec{x}$)
(c) $\vec{x}+\vec{z}=\vec{y}+\vec{z} \Rightarrow \vec{x}=\vec{y}$ (Cancellation law)
(d) $\frac{0}{\hat{F}} \vec{x}=\overrightarrow{0} \quad \forall \vec{x} \in V$
(e) $(-a) \vec{x}=-(a \vec{x})=a(-\vec{x}), \forall a \in F, \forall \vec{x} \in V$
(f) $\quad \overrightarrow{\frac{\hat{N}}{F}} \overrightarrow{0}=\overrightarrow{0} \quad \forall a \in F$

Subspace
Definition: A subset W of a vector space V over a field F is called a subspace of V if W is a vector space over F under the same addition and scalar multiplication inherited from V.

Proposition: Let V be a vector space V over F. A subset $w \subset V$ is a subspace iff the following 3 conditions hold:
(a) $\overrightarrow{0}_{v} \in W$
(b) $\vec{x}+\vec{y} \in W, \forall \vec{x}, \vec{y} \in W$ (closed under t)
(c) $a \vec{x} \in W, \forall a \in F, \forall \vec{x} \in W$ (closed under.)

Examples: . For any vector span V / F,
$\{\overrightarrow{0}\} \subset V$; $V \subset V$ (trivial subspaas) zens subspace

- For $V=M_{n \times n}(F)$,

$$
\begin{aligned}
& W_{1}=\{\operatorname{diagonal} \text { matrices }\} \subset V \text { subspaa } \\
& W_{2}=\left\{A \in M_{n \times n}(F): \operatorname{det}(A)=0\right\} \subset V \\
& \text { is NoT subspace. } \\
&(\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)) \\
& W_{3}=\left\{A \in M_{n \times n}(F): \operatorname{tr}(A)=0\right\} \subset V
\end{aligned}
$$

subspace

- For $V=P(F)$
$P_{n}(F) \stackrel{\operatorname{def}}{=}\{f \in P(F)=\operatorname{deg}(f) \leqslant n\}$ is a subspace
$W \stackrel{\operatorname{def}}{=}\{f \in P(F)=\operatorname{deg}(f)=n\}$
is NOT subspace.
- Consider $V=F^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{j} \in F\right.$ for $\left.j=1,2, \ldots, n\right\}$ Consider linear system:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{array} \Leftrightarrow A \vec{x}=\vec{b}\right.
$$

gives a subset, the solution net $S \subset V$
Is S a subspace?
Yes if $\left(b_{1}, b_{2}, \ldots, b_{m}\right)=\overrightarrow{0} \quad$ (Null space / Kernel)
No if $\left(b_{1}, b_{2}, \ldots, b_{m}\right) \neq \overrightarrow{0} \quad\left(\begin{array}{l}A \vec{x}=\vec{b} \\ A \vec{y}=\vec{b}\end{array} \Rightarrow A(\vec{x}+\vec{y})=2 \vec{b}\right)$

Theorem: Any intersection of subspaces of a vector space V is a subspace of V.

Question: $W_{1}=$ subspace; $W_{2}=$ subspace
V
(1). V
$W_{1} \cap W_{2}$ is subspace
Is $W_{1} \cup W_{2}$ a subspace?? No general.
\bigcirc

Linear Combination and Span
Definition: Let V be a vector space over F and $S \subset V$ a non-empty subset.

- We say a vector $\vec{v} \in V$ is a linear combination of vectors of S if $\exists \vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n} \in S$ and $a_{1}, a_{2}, \ldots, a_{n} \in F$ such that:

$$
\stackrel{\rightharpoonup}{v}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\ldots+a_{n} \vec{u}_{n} .
$$

Remark: \vec{v} is usually called a linear combination of $\vec{u}_{1}, \ldots, \vec{u}_{n}$ and a_{1}, \ldots, a_{n} are the coefficients of the linear combination.

- The span of S, denoted as $\operatorname{Span}(S)$, is the set of all linear combination of vectors of S.

$$
S_{\text {pan }}(S) \stackrel{\text { def }}{=}\left\{a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\ldots+a_{n} \vec{u}_{n}=a_{j} \in F, \vec{u}_{j} \in S \quad \begin{array}{l}
\text { for } j=1,2, \ldots, n, \\
n \in \mathbb{N}\}
\end{array}\right.
$$

Remark: - By convention, $\operatorname{span}(\phi) \stackrel{\text { def }}{=}\{\overrightarrow{0}\}$.

Example: $\cdot F^{n}=\operatorname{Span}\left(\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}\right)$ where $\vec{e}_{j}=\left(0,0, \ldots, \frac{1}{\uparrow}, 0, \ldots\right)$

$$
\begin{aligned}
& \text { - } P(F)=\operatorname{Span}\left(\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}\right) \\
& M_{n \times n}(F)=\operatorname{Span}(S)_{\text {pw }} \\
& \\
& S=\left\{E_{i j} \stackrel{\operatorname{def}}{=}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \ldots & 0 \\
0 & \ldots & 0 \\
0 & \ldots & 0
\end{array}\right) i^{\text {th }}: 1 \leq i, j \leq n\right\}
\end{aligned}
$$

Theorem: Let $S \subset V$ be a subset of (2 vector space V over F. Then, $\operatorname{span}(S)$ is the smallest subspace of V consisting S. (If W is a subspace containing S, then $\operatorname{span}(S) \subset W$)

Linear independence
Definition: Let V be a vector space over F. A subset $S \subset V$ is said to be linearly dependent if \exists distinct $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n} \in S$ and scalars $a_{1}, a_{2}, \ldots, a_{n} \in F$, not all zero, sit.

$$
a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\ldots+a_{n} \vec{u}_{n}=\overrightarrow{0}
$$

Otherwise, it is said to be linearly independent.
e.g. . The empty net $\phi \subset V$ is linearly independent.

- If $\overrightarrow{0} \in S$, the S is linearly dependent
- If $S=\{\vec{u}\}$ and $\vec{u} \neq \overrightarrow{0}$, then S is linearly independent. $\binom{\lambda \vec{u}=\overrightarrow{0}}{\Rightarrow \lambda=0}$

Proposition: Let $S \subset V$ be a subset of a vector space V. Then, the following are equivalent.
(1) S is linearly independent
(2) Each $\vec{x} \in \operatorname{span}(s)$ can be expressed in a unique way as a linear combination of vectors of S.
(3) The only representations of $\overrightarrow{0}$ as linear combinations of vectors of S are trivial representations, i.e., if

$$
\stackrel{\rightharpoonup}{0}=a_{1} \vec{u}_{1}+\ldots+a_{n} \vec{u}_{n} \quad \text { for }
$$

some $\vec{u}_{1}, \dot{u}_{2}, \ldots, \vec{u}_{n} \in S, a_{1}, a_{2}, \ldots, a_{n} \in F$, then we must have $a_{1}=a_{2}=\ldots=a_{n}=0$

Example: For $k=0,1,2, \ldots, n$, let $f_{k}(x)=1+x+x^{2}+\ldots+x^{k}$.
Then: $S=\left\{f_{0}^{(x)}, f_{1}^{(x)}, f_{2}^{(x)}, \ldots, f_{n}(x)\right\} \subset P_{n}(F)$ is a linearly independent subset.

$$
\begin{aligned}
& 0 \overrightarrow{0}= a_{0} f_{0}(x)+a_{1} f_{1}(x)+\ldots+a_{n} f_{n}(x) \\
&= a_{0}+a_{1}(1+x)+a_{2}\left(1+x+x^{2}\right)+\ldots+a_{n}\left(1+x+\ldots+x^{n}\right) \\
&=\left(a_{0}+a_{1}+\ldots+a_{n}\right) 1+\left(a_{1}+a_{2}+\ldots+a_{n}\right) x \\
&+\left(a_{2}+a_{3}+\ldots+a_{n}\right) x^{2}+\ldots+a_{n} x^{n} \\
&\left\{\begin{aligned}
& a_{0}+a_{1}+\ldots+a_{n}=0 \\
& a_{1}+\ldots+a_{n}=0 \\
& a_{2}+\ldots+a_{n}=0 \quad \Rightarrow a_{1}=a_{2}=\ldots=a_{n}=0 . \\
& a_{n}=0
\end{aligned}\right.
\end{aligned}
$$

Theorem: Let S be a linearly independent subset of a vector space V. Let $\vec{v} \in V, S$. Then: $S u\{\vec{v}\}$ is linearly dependent iff $\vec{v} \in \operatorname{Span}(S)$.

Definition: A basis for a vector space V is a subset $\beta \subset V$ such that:

- β is linearly independent and
- β spans V, i.e. $\operatorname{Span}(\beta)=V$.
e.9. $. F^{n}:\left\{\vec{e}_{1}=(1,0, \ldots, 0), \vec{e}_{2}=(0,1,0 \ldots, 0), \ldots, \vec{e}_{i}=(0, \ldots, 0,1,0.0)\right.$ eth is a basis for F^{n}.

$$
\left.\ldots, \vec{e}_{n}=(0,0, \ldots, 1)\right\}
$$

$$
\text { - } \begin{aligned}
& M_{2 \times 2}(F)=\left\{\left(\begin{array}{cc}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
1 & -2
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right)\right\} \subset M_{2 \times 2}(F) \\
& \text { is a basis for } M_{2 \times 2}(F)
\end{aligned}
$$

is a basis for $M_{2 \times 2}(F)$

- $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis for $P_{n}(F)$
. $\left\{1, x, x^{2}, \ldots.\right\}$ is a basis for $P(F)$.

Theorem: Let V be a vector space and $\beta=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right\} \subset V$. Then: β is basis for V if and only if: $\forall \vec{v} \Theta V, \exists$!(unique) $a_{1}, a_{2}, \ldots, a_{n} \in F$ such that: (for all) (in) (Cheri,

$$
\vec{v}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\ldots+a_{n} \vec{u}_{n} .
$$

V with $\beta=\{c, 0, \varnothing\}$
$\star V$
Pineapple is associated with a unique $2,3,4$ such that

$$
\text { Pineapple }=2 c+30+40
$$

Pine apple $\leftrightarrow\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right) \in \mathbb{R}^{3}$

Lemma: Let S be a linearly dependent subset of a vector space V.
Then: $\exists \vec{v} \in S$ such that $\operatorname{span}(S \backslash\{\vec{v}\})=\operatorname{span}(S)$.

Theorem: Suppose S is a finite spanning set for a vector space V. Then: $\exists \beta \subset S$ which is a basis for V.
(A finite spanning set can be reduced to a basis)

Theorem: Let v be a vector space.
Let $G \subset V$ be a spanning set for V consisting of n vectors. and $L \subset V$ be a linearly independent subset consisting of m vectors. Then, $m \leq n$ and $\exists H C G$ consisting of exactly $n-m$ vectors such that $L \cup H$ spans V.
(Replacement the)

Dimension
Cor 1: Let V be a vector space having a finite basis. Then, every basis of V contains the same number of vectors.
Pf: Let β and γ be two bases of V.
Since β spans V and γ is lin. independent, then $|\gamma| \leqslant|\beta|$ (by replacement The) Similarly, $|\beta| \leqslant|\gamma|$

$$
\Rightarrow|\gamma|=|\beta|
$$

Definition: A vector space V is called finite-dimensional if it has a finite basis. The dimension of V, denoted as $\operatorname{dim}(V)$, is the number of vectors in a basis for V.

A vector space which is not finite-dimensional is called infinite -dimensional

Example: . F^{n} is n-dimensional

- $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is infinite-dimensional

