Lecture 11: Eigenvalue & Eigenvectors
Def: A linear operator
$$T: V \rightarrow V$$
 (where V vs finite-dim) is
called diagonalizable if \exists an ordered basis β for V such
that $[T]_{\beta}$ is a diagonal matrix.
A square matrix A is called diagonalizable if LA is so.
Observation: Say $\beta = \overline{zv_1}, \overline{v_2}, ..., \overline{vn}$.
If $D = [T]_{\beta}$ is diagonal, then $\forall \overline{v_j} \in \beta$, we have:
 $(D_{ij}) T(\overline{v_j}) = \sum_{i=1}^{n} D_{ij} \overline{v_i} = D_{jj} \overline{v_j} = \lambda_j \overline{v_j}$
Conversely, if $T(\overline{v_j}) = \lambda_j \overline{v_j}$ for some $\lambda_1, \lambda_{2n-2}, \lambda_n \in F_{j}$
then: $[T]_{\beta} = (f_1(\overline{v_i})_{\beta} - -) = (\sum_{i=1}^{n} \overline{v_i} - \sum_{i=1}^{n} \overline{v_i} - \sum$

Def: Let T be a linear operator on a vector space V/F.
A non-zero vector
$$\vec{v} \in V$$
 is called an eigenvector of T
if $\exists \lambda \in F$ s.t. $T(\vec{v}) = \lambda \vec{v}$. In this case, $\lambda \in F$
is called an eigenvalue corresponding to the eigenvector \vec{v} .
For a square matrix $A \in MnxnLF$, a non-zero vector $\vec{v} \in F^n$
is called an eigenvector of A if \vec{i} is an eigenvector of L_A .
That is: $A\vec{v} = \lambda \vec{v}$ for some $\lambda \in F$.
 λ is called the eigenvalue corresponding to the
eigenvector \vec{v} .

.

Prop: A linear operator
$$T: V \rightarrow V$$
 (V = fin-dim) is diagonalizable
iff 3 an ordered basis β for V consisting of eigenvectors
of T.
In such case, if $\beta = \hat{z} \overline{v}_1, \overline{v}_2, ..., \overline{v}_n \hat{y}$, then:
 $[T]_{\beta} = \begin{pmatrix} \lambda_1 & \lambda_2 & O \\ O & \lambda_n \end{pmatrix}$
Where λ_3 is the eigenvalue of T corresponding to \overline{v}_j :

Example:
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, $\beta = \underbrace{\{ 1 \ 1 \ 1 \ 2 \end{pmatrix}}_{1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{1}$
Check that they are All
eigenvectors and β is basis.

Let $T: IR^{2} \rightarrow IR^{2}$ be rotation by \underbrace{I}_{2} in counter-clockwise
direction.
(Check: $T = LA$ where $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$)
Then: $T(\overline{v})$ is always perpendicular to \overline{v} .

i. For $\forall \overline{v} \neq \overline{v}$, it cannot be an eigenvector because
 $T(\overline{v}) \neq A\overline{v}$ for some $\lambda \in F$

-

-

0747

_

Example: Consider T:
$$C^{\infty}(IR) \rightarrow C^{\infty}(IR)$$
 defined by:
Space of smooth function
are infinitely differentiable
 $T(f) = f'$
Then an eigenvector of T with eigenvalue λ is a non-zero
Solution of : $\frac{df}{dt} = \lambda f(t)$
 $(\Rightarrow) f(t) = C e^{\lambda t}$ for some constant C.
 \therefore all $\lambda \in IR$ is an eigenvalue of T.

Def: The characteristic polynomial of
$$A \in Mnxn(F)$$
, is
defined as the polynomial $f_A(t) \stackrel{def}{=} det(A - t In) \in Pn(F)$
Def: Let T be a linear operator on an n-dim vector space
V. Choose an ordered basis β for V. Then, the
characteristic polynomial of T is defined as the
characteristic polynomial of $[TI]_{\beta}$.
(i.e. $f_T(t) \stackrel{def}{=} det([TI]_{\beta} - t In) \in Pn(F))$

is well-defined, i.e. independent of the choice f - (+) Prop: of B. B' is another ordered basis for V, then: If Pf: $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q \quad (Q = [I_{\nu}]_{\beta'}^{\beta})$ = det (Q⁻¹[T], Q - t In) Then: det (ET]p, -tIn) = det (Q'([T]p - tIn)Q) = det (12^{-1}) det $([T]_p - t]_n)$ det(Q)det(Q) $= f_{\tau}(t)$

-

0.04

Prop: Let T be a linear operator on a vector space V, and (ef A1, 2, ..., 2k be distinct eigenvalues of T, If Vi, V2, ..., Vk are eigenvectors of T corresponding to AI, Az,..., AK respectively, then ? TI, ..., Nh3 are linearly independent. Proof: We prove by induction on k. For k=1, V, ≠0 ⇒ {V,} is lin. independent, Suppose the statement holds for k=1 distinct eigenvalues. Let N, N2, ..., Nk, Nk+1 be eigenvectors corresponding to kt1 distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k, \lambda_{k+1}$ of T.

If
$$a_1 \overline{v}_1 + a_2 \overline{v}_2 + ... + a_k \overline{v}_k + a_{k+1} \overline{v}_{k+1} = \overline{o}$$
 for $a_i \in F$,
then applying $T - \lambda_{k+1} Iv$ to both sides $\frac{N(T - \lambda_{k+1} Iv) \setminus \{\overline{o}\}}{g_i ves_i}$:
 $a_1(\lambda_1 - \lambda_{k+1}) \overline{v}_1 + ... + a_k(\lambda_k - \lambda_{k+1}) \overline{v}_k = \overline{o}$
By induction hypothesis,
 $a_1(\lambda_1 - \lambda_{k+1}) = ... = a_k(\lambda_k - \lambda_{k+1}) = 0$
 $\Rightarrow a_1 = a_2 = ... = a_k = 0$
 $\Rightarrow a_{k+1} \overline{v}_{k+1} = \overline{o}$
 $\Rightarrow a_{k+1} \overline{v}_{k+1} = \overline{o}$
 $\Rightarrow a_{k+1} = 0$
 $\therefore \{\overline{v}_1, ..., \overline{v}_{k+1}\}$ is Lin, indep.