Lecture 11: Eigenvalue \& Eigenvectors
Def: A linear operator $T: V \rightarrow V$ (where V is finite-dim) is called diagonalizable if \exists an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
A square matrix A is called diagonalizable if L_{A} is so. Observation: Say $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$.
If $D_{11}=[T]_{\beta}$ is diagonal, then $\forall \vec{v}_{j} \in \beta$, we have:

$$
\left(D_{i j}^{\prime \prime}\right) T\left(\vec{v}_{j}\right)=\sum_{i=1}^{n} D_{i j} \vec{v}_{i}=\underbrace{D_{j j}}_{\lambda_{j}} \vec{v}_{j}=\lambda_{j} \vec{v}_{j}
$$

Conversely, if $T\left(\vec{v}_{j}\right)=\lambda_{j} \vec{v}_{j}$ for some $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in F$, then: $[T]_{\beta}=\left(\left[T\left(v_{1}\right)\right]_{\beta}-\cdots\right)=\left(\begin{array}{cccc}\lambda_{1} & 0 & & 0 \\ 0 & \lambda_{2} & & \vdots \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \lambda_{n} \\ 0 & 0 & & \lambda_{n}\end{array}\right)$

Def: Let T be a linear operator on a vector space V / F. A non-zew vector $\vec{v} \in V$ is called an eigenvector of T if $\exists \lambda \in F$ s.t. $T(\vec{v})=\lambda \vec{v}$. In this case, $\lambda \in F$ is called an eigenvalue corresponding to the eigenvector \vec{v}.

For a square matrix $A \in M_{n \times n}(F)$, a non-zers vector $\vec{v} \in F^{n}$ is called an eigenvector of A if it is an eigenvector of L_{A}. That is: $A \vec{v}=\lambda \vec{v}$ for some $\lambda \in F$.
λ is called the eigenvalue corresponding to the eigenvector \vec{v}.

Prop: A linear operator $T: V \rightarrow V \quad(V=$ fin-dim $)$ is diagonalizable of \exists an ordered basis β for V consisting of eigenvectors of T.
In such case, if $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$, then:

$$
[T]_{\beta}=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & 0 \\
& 0 & \ddots & \\
& & & \lambda_{n}
\end{array}\right)
$$

Where λ_{j}, is the eigenvalue of T corresponding to \vec{v}_{j}.

Example: $\cdot A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right), \beta=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right\}$ Check that they are All
Then: $\left[L_{A}\right]_{\beta}=\left(\begin{array}{ll}4 & 0 \\ & 1 \\ 0 & 1\end{array}\right)$ eigenvectors and β is basis.

- Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be rotation by $\frac{\pi}{2}$ in counter-clockwise direction.
(Check: $T=L_{A}$ where $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$)
Then: $T(\vec{v})$ is always perpendicular to \vec{v}.
\therefore For $\forall \vec{v} \neq \overrightarrow{0}$, it cannot be an eigenvector because: $T(\vec{v}) \neq \lambda \vec{v}$ for some $\lambda \in F$

Example: Consider $T: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ defined by: Space of smooth function
are infinitely differentiable

$$
T(f)=f^{\prime}
$$

Then an eigenvector of T with eigenvalue λ is a non-zero Solution of =

$$
\frac{d f}{d t}=\lambda f(t)
$$

$\Leftrightarrow f(t)=C e^{\lambda t}$ for some constant C.
\therefore all $\lambda \in \mathbb{R}$ is an eigenvalue of T.

Prop: Let $A \in M_{n \times n}(F)$. Then $\lambda \in F$ is an eigenvalue of A iff $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.
Pf: $\quad \lambda \in F$ is an eigenvalue of A

$$
\Leftrightarrow \quad \exists \vec{v} \in F^{n} \backslash\{\overrightarrow{0}\} \quad \text { s.t. } \begin{array}{ll}
& A \vec{v}=\lambda \vec{v} \\
\Leftrightarrow & \left(A-\lambda I_{n}\right) \vec{v}=\overrightarrow{0}
\end{array}
$$

$\Leftrightarrow \quad A-\lambda I_{n}$ is singular
$\Leftrightarrow A-\lambda I_{n}$ is not invertible

$$
\Leftrightarrow \quad \operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

Def: The characteristic polynomial of $A \in M_{n \times n}(F)$. is defined as the polynomial $f_{A}(t) \stackrel{\operatorname{def}}{=} \operatorname{det}\left(A-t I_{n}\right) \in P_{n}(F)$

Def: Let T be a linear operator on an n-dim vector space V. Choose an ordered basis β for V. Then, the characteristic polynomial of T is defined as the characteristic polynomial of $[T]_{\beta}$.

$$
\left(\text { i.e. } f_{T}(t) \stackrel{\text { def }}{=} \operatorname{det}\left([T]_{\beta}-t I_{n}\right) \in P_{n}(F)\right)
$$

Prop: $f_{T}(t)$ is well-defined, i.e. independent of the choice of β.
Pf: If β^{\prime} is another ordered basis. for V, then:

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q \quad\left(Q=\left[I_{v}\right]_{\beta^{\prime}}^{\beta}\right)
$$

Then:

$$
\begin{aligned}
\operatorname{det}\left([T]_{\beta^{\prime}}-t I_{n}\right)= & \operatorname{det}\left(Q^{-1}[T]_{\beta} Q-t I_{n}\right) \\
= & \operatorname{det}\left(Q^{-1}\left([T]_{\beta}-t I_{n}\right) Q\right) \\
= & \operatorname{det}\left(Q^{-1}\right) \operatorname{det}\left([T]_{\beta}-t I_{n}\right) \operatorname{det}(Q) \\
& \frac{1}{\operatorname{det}(Q)} \\
= & f_{T}(t) .
\end{aligned}
$$

Prop: Let $A \in M_{n \times n}(F)$. Then:

- $f_{A}(t)$ is of degree n and with leading coefficient $(-1)^{n}$.
- A has at most n distinct eigenvalues.

Pf: Exercise
Def: A polynomial $f(t) \in P(F)$ splits over F if \exists

$$
c, a_{1}, a_{2}, \ldots, a_{n} \in F \text { sit. } f(t)=c\left(t-a_{1}\right)\left(t-a_{2}\right) \ldots\left(t-a_{n}\right)
$$

Prop: The characteristic polynomial of a diagonalizable linear operator on a finite-dim vector space V / F Splits over F.

Pf: If V is a $n-\operatorname{dim}$ and $T: V \rightarrow V$ is diagonalizable, then \exists a basis $\rho \subset \vee$ s.t.

$$
[T]_{\beta}=\left(\begin{array}{llll}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& 0 & \ddots & \lambda_{n}
\end{array}\right)
$$

Then:

$$
\begin{aligned}
f_{T}(t) & =\operatorname{det}\left([T]_{p}-t I_{n}\right) \\
& =(-1)^{n}\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right)
\end{aligned}
$$

Prop: Let T be a linear operator on a vector space V and let λ be an eigenvalue of T. Then, $\vec{v} \in V$ is an eigenvector of T corresponding to λ iff:

Pf: Exercise.

$$
\begin{aligned}
& \vec{v} \in N\left(T-\lambda I_{v}\right) \backslash\{\overrightarrow{0}\} \\
& T \vec{v}=\lambda \vec{v} \\
& \Leftrightarrow\left(T-\lambda I_{v}\right) \vec{v}=\overrightarrow{0}
\end{aligned}
$$

Def: Let T be a linear operator on a vector space V and let λ be an eigenvalue of T.
Then: the subspace $E_{\lambda}: \stackrel{\text { def }}{=} N\left(T-\lambda I_{V}\right)=\{\vec{x} \in V: T(\vec{x})=\lambda \vec{x}\}$ c V is called the eigenspace of T corresponding to λ.

Eigenspaus of a matrix $A \in M_{n \times n}(F)$ is defined as those of L_{A}

Prop: Let T be a linear operator on a vector space V, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues of T, If $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ are eigenvectors of T corresponding to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ respectively, then: $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ are linearly independent.
Proof: We prove by induction on k.
For $k=1, \quad \vec{v}_{1} \neq \overrightarrow{0} \Rightarrow\left\{\vec{v}_{1}\right\}$ is lin. independent.
Suppose the statement holds for $k \geqslant 1$ distind eigenvalues.
Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}, \vec{v}_{k+1}$ be eigenvectors corresponding to $k+1$ distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, \lambda_{k+1}$ of T.

If $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{k} \vec{v}_{k}+a_{k+1} \vec{v}_{k+1}=\overrightarrow{0}$ for $a_{i} \in F$, then applying $T-\lambda_{k+1} I_{v}$ to both sides $\begin{gathered}\text { gives: }\end{gathered}$

$$
a_{1}\left(\lambda_{1}-\lambda_{k+1}\right) \vec{v}_{1}+\ldots+a_{k}\left(\lambda_{k}-\lambda_{k+1}\right) \vec{v}_{k}=\overrightarrow{0}
$$

By induction hyp. thesis,

$$
\begin{aligned}
& \text { By induction hyp. thesis, } \\
& a_{1}\left(\lambda_{1}-*^{0} \lambda_{k+1}\right)=\cdots=a_{k}\left(\lambda_{k}-\stackrel{\lambda}{\lambda}_{k+1}^{0}\right)=0 \\
& \Rightarrow a_{1}=a_{2}=\cdots=a_{k}=0 \\
& \Rightarrow a_{k+1} \vec{v}_{k+1}^{*}=\overrightarrow{0} \\
& \Rightarrow a_{k+1}=0
\end{aligned}
$$

$\therefore\left\{\vec{v}_{1}, \ldots, \vec{v}_{k+1}\right\}$ is lin. indep.

