MATH 2020B Advanced Calculus II 2023-24 Term 2 Suggested Solution of Homework 9

Refer to Textbook: Thomas' Calculus, Early Transcendentals, 1 13th Edition

Exercises 16.6

37. Find the flux of the field $\mathbf{F}(x, y, z)=z^{2} \mathbf{i}+x \mathbf{j}-3 z \mathbf{k}$ outward through the surface cut from the parabolic cylinder $z=4-y^{2}$ by the planes $x=0, x=1$, and $z=0$.

Solution. The surface has a parametrization

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(4-y^{2}\right) \mathbf{k}, \quad(x, y) \in \Omega:=\{(x, y): 0 \leq x \leq 1,-2 \leq y \leq 2\} .
$$

Then

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 0 \\
0 & 1 & -2 y
\end{array}\right|=2 y \mathbf{j}+\mathbf{k} \quad \text { (outward normal), }
$$

and

$$
\mathbf{F}(\mathbf{r}(x, y)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right)=\left(\left(4-y^{2}\right)^{2} \mathbf{i}+x \mathbf{j}-3\left(4-y^{2}\right) \mathbf{k}\right) \cdot(2 y \mathbf{j}+\mathbf{k})=2 x y-3\left(4-y^{2}\right) .
$$

Hence, the flux through the surface is

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma & =\iint_{\Omega} \mathbf{F}(\mathbf{r}(x, y)) \cdot \frac{\mathbf{r}_{x} \times \mathbf{r}_{y}}{\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|}\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| d x d y \\
& =\int_{0}^{1} \int_{-2}^{2}\left[2 x y-3\left(4-y^{2}\right)\right] d y d x \\
& =\int_{0}^{1}-32 d x=-32
\end{aligned}
$$

42. Find the outward flux of the field $\mathbf{F}=x z \mathbf{i}+y z \mathbf{j}+\mathbf{k}$ across the surface of the upper cap cut from the solid sphere $x^{2}+y^{2}+z^{2} \leq 25$ by the plane $z=3$.

Solution. Across the cap S_{1} : The surface is given by the level surface

$$
g(x, y, z):=x^{2}+y^{2}+z^{2}=25, \quad(x, y) \in \Omega:=\left\{(x, y): x^{2}+y^{2} \leq 16\right\}
$$

Then an outward unit normal is

$$
\mathbf{n}=\frac{\nabla g}{|\nabla g|}=\frac{2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}}{10}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{5}
$$

and

$$
\mathbf{F} \cdot \mathbf{n}=(x z \mathbf{i}+y z \mathbf{j}+\mathbf{k}) \cdot \frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{5}=\frac{x^{2} z+y^{2} z+z}{5} .
$$

Since $z>0$ on the surface, $\frac{\partial g}{\partial z}=2 z \neq 0$, and so

$$
d \sigma=\frac{|\nabla g|}{\left|\frac{\partial g}{\partial z}\right|} d x d y=\frac{\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}}{|2 z|} d x d y=\frac{5}{z} d x d y
$$

Hence, the outward flux through the surface S_{1} is

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma & =\iint_{\Omega} \frac{x^{2} z+y^{2} z+z}{5} \cdot \frac{5}{z} d x d y=\iint_{\Omega}\left(x^{2}+y^{2}+1\right) d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{4}\left(r^{2}+1\right) r d r d \theta=144 \pi
\end{aligned}
$$

Across the bottom S_{2} : The surface is given by the level surface

$$
h(x, y, z):=z=3, \quad(x, y) \in \Omega:=\left\{(x, y): x^{2}+y^{2} \leq 16\right\}
$$

Then an outward unit normal is $-\mathbf{k}$ and

$$
\mathbf{F} \cdot \mathbf{n}=(x z \mathbf{i}+y z \mathbf{j}+\mathbf{k}) \cdot(-\mathbf{k})=-1 .
$$

Since $\frac{\partial h}{\partial z}=1 \neq 0, d \sigma=d x d y$. Hence, the outward flux through the surface S_{2} is

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{\Omega}-1 d x d y=-\pi(4)^{2}=-16 \pi
$$

Therefore, the total outward flux is $144 \pi-16 \pi=128 \pi$.

Exercises 16.7

3. Use the surface integral in Stokes' Theorem to calculate the circulation of the field \mathbf{F} around the curve C in the indicated direction.
$\mathbf{F}=y \mathbf{i}+x z \mathbf{j}+x^{2} \mathbf{k}$
C : The boundary of the triangle cut from the plane $x+y+z=1$ by the first octant, counterclockwise when viewed from above.

Solution. Note that

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & x z & x^{2}
\end{array}\right|=-x \mathbf{i}-2 x \mathbf{j}+(z-1) \mathbf{k} .
$$

and the plane $g(x, y, z):=x+y+z=1$ has unit normal $\mathbf{n}=\frac{1}{\sqrt{3}}(\mathbf{i}+\mathbf{j}+\mathbf{k})$. Then

$$
\nabla \times \mathbf{F} \cdot \mathbf{n}=\frac{1}{\sqrt{3}}(-3 x+z-1)
$$

and $d \sigma=\frac{|\nabla g|}{\left|\frac{\partial g}{\partial z}\right|} d x d y=\sqrt{3} d x d y$. By Stokes' Theorem, the circulation of the field \mathbf{F} around the curve C is

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{1} \int_{0}^{1-x}[-3 x+(1-x-y)-1] d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x}(-4 x-y) d y d x=-\frac{5}{6}
\end{aligned}
$$

6. Use the surface integral in Stokes' Theorem to calculate the circulation of the field \mathbf{F} around the curve C in the indicated direction.
$\mathbf{F}=x^{2} y^{3} \mathbf{i}+\mathbf{j}+x \mathbf{k}$
C : The intersection of the cylinder $x^{2}+y^{2}=4$ and the hemisphere $x^{2}+y^{2}+z^{2}=16$, $z \geq 0$, counterclockwise when viewed from above.

Solution. Note that

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y^{3} & 1 & x
\end{array}\right|=0 \mathbf{i}-0 \mathbf{j}-3 x^{2} y^{2} \mathbf{k}=-3 x^{2} y^{2} \mathbf{k},
$$

and C is the boundary of the disk $S:=\left\{(x, y, 2 \sqrt{3}): x^{2}+y^{2} \leq 4\right\}$ with upward unit normal $\mathbf{n}=\mathbf{k}$.
By Stokes' Theorem, the circulation of the field \mathbf{F} around the curve C is

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{\left\{x^{2}+y^{2} \leq 4\right\}}-3 x^{2} y^{2} d x d y \\
& =-3 \int_{0}^{2 \pi} \int_{0}^{2}(r \cos \theta)^{2}(r \sin \theta)^{2} r d r d \theta=-\frac{3}{4} \int_{0}^{2 \pi} \sin ^{2} 2 \theta d \theta \int_{0}^{2} r^{5} d r \\
& =-\frac{3}{8}(2 \pi) \frac{2^{6}}{6}=-8 \pi .
\end{aligned}
$$

9. Let S be the cylinder $x^{2}+y^{2}=a^{2}, 0 \leq z \leq h$, together with its top, $x^{2}+y^{2} \leq a^{2}, z=h$. Let $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}+x^{2} \mathbf{k}$. Use Stoke's Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through S.

Solution. The surface S has a boundary $C: x^{2}+y^{2}=a^{2}, z=0$ which has a parametrization

$$
\mathbf{r}(t)=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}, \quad 0 \leq t \leq 2 \pi .
$$

Then $\mathbf{r}^{\prime}(t)=(-a \sin t) \mathbf{i}+(a \cos t) \mathbf{j}$ and

$$
\mathbf{F} \cdot \mathbf{r}^{\prime}(t)=(-a \sin t)(-a \sin t)+(a \cos t)(a \cos t)=a^{2} .
$$

By Stokes' Theorem, the flux of $\nabla \times \mathbf{F}$ outward through S is

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} a^{2}=2 \pi a^{2}
$$

12. Suppose $\mathbf{F}=\nabla \times \mathbf{A}$, where

$$
\mathbf{A}=(y+\sqrt{z}) \mathbf{i}+e^{x y z} \mathbf{j}+\cos (x z) \mathbf{k}
$$

Determine the flux of \mathbf{F} outward through the whole unit sphere $x^{2}+y^{2}+z^{2}=1$.
Solution. If A is C^{1}, then Stokes' Theorem implies that the outward flux is 0 since the whole unit sphere has no boundary. However, A (and hence F) is not defined when $z<0$, so there is probably a problem in the question.
14. Use the surface integral in Stokes' Theorem to calculate the flux of the curl of the field \mathbf{F} across the surface S in the direction of the outward unit normal \mathbf{n}.

$$
\begin{aligned}
& \mathbf{F}=(y-z) \mathbf{i}+(z-x) \mathbf{j}+(x+z) \mathbf{k} \\
& S: \quad \mathbf{r}(r, \theta)=(r \cos \theta) \mathbf{i}+(r \sin \theta) \mathbf{j}+\left(9-r^{2}\right) \mathbf{k}, \quad 0 \leq r \leq 3, \quad 0 \leq \theta \leq 2 \pi .
\end{aligned}
$$

Solution. Note that

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y-z & z-x & x+z
\end{array}\right|=-\mathbf{i}-2 \mathbf{j}-2 \mathbf{k},
$$

and

$$
\mathbf{r}_{r} \times \mathbf{r}_{\theta}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos \theta & \sin \theta & -2 r \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right|=\left(2 r^{2} \cos \theta\right) \mathbf{i}+\left(2 r^{2} \sin \theta\right) \mathbf{j}+r \mathbf{k} .
$$

Hence,

$$
\text { The flux of } \nabla \times \mathbf{F} \text { across } S=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{R}(\nabla \times \mathbf{F}) \cdot\left(\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right) d r d \theta
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{3}\left(-2 r^{2} \cos \theta-4 r^{2} \sin \theta-2 r\right) d r d \theta \\
& =-18 \pi
\end{aligned}
$$

17. Use the surface integral in Stokes' Theorem to calculate the flux of the curl of the field \mathbf{F} across the surface S in the direction of the outward unit normal \mathbf{n}.
$\mathbf{F}=3 y \mathbf{i}+(5-2 x) \mathbf{j}+\left(x^{2}-2\right) \mathbf{k}$
$S: \mathbf{r}(\phi, \theta)=(\sqrt{3} \sin \phi \cos \theta) \mathbf{i}+(\sqrt{3} \sin \phi \sin \theta) \mathbf{j}+(\sqrt{3} \cos \phi) \mathbf{k}, \quad 0 \leq \phi \leq \pi / 2, \quad 0 \leq \theta \leq 2 \pi$.
Solution. Note that

$$
\begin{aligned}
& \nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 y & (5-2 x) & \left(x^{2}-2\right)
\end{array}\right|=-5 \mathbf{k}, \\
\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\sqrt{3} \cos \phi \cos \theta & \sqrt{3} \cos \phi \sin \theta & -\sqrt{3} \sin \phi \\
-\sqrt{3} \sin \phi \sin \theta & \sqrt{3} \sin \phi \cos \theta & 0
\end{array}\right| \\
& =\left(3 \sin ^{2} \phi \cos \theta\right) \mathbf{i}+\left(3 \sin ^{2} \phi \sin \theta\right) \mathbf{j}+(3 \sin \phi \cos \phi) \mathbf{k} .
\end{aligned}
$$

Hence, the flux of $\nabla \times \mathbf{F}$ across S is

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma & =\iint_{R}(\nabla \times \mathbf{F}) \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right) d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 2}(-15 \cos \phi \sin \phi) d \phi d \theta \\
& =-15 \pi
\end{aligned}
$$

22. Zero circulation Let $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$. Show that the clockwise circulation of the field $\mathbf{F}=\nabla f$ around the circle $x^{2}+y^{2}=a^{2}$ in the $x y$-plane is zero.
(a) by taking $\mathbf{r}=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}, 0 \leq t \leq 2 \pi$, and integrating $\mathbf{F} \cdot d \mathbf{r}$ over the circle.
(b) by applying Stokes' Theorem.

Solution. (a) Note that

$$
\mathbf{F}=\nabla f=-\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}},
$$

and

$$
\mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=-\frac{(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}}{\left(a^{2}\right)^{3 / 2}} \cdot((-a \sin t) b i+(a \cos t) \mathbf{j})=0 .
$$

Hence,

$$
\text { Circulation }=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t} d t=0 .
$$

(b) Note that $\nabla \times \mathbf{F}=\nabla \times \nabla f=\mathbf{0}$. Hence, by Stokes' Theorem,

$$
\text { Circulation }=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{S} 0 d \sigma=0 .
$$

25. Find a vector field with twice-differentiable components whose curl is $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ or prove that no such field exists.

Solution. Suppose \mathbf{F} is a field such that $\nabla \times \mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Then

$$
\nabla \cdot(\nabla \times \mathbf{F})=0
$$

but

$$
\nabla \cdot(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})=1+1+1=3 .
$$

Contradiction. So no such field \mathbf{F} exists.

