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MATH 2020B Advanced Calculus II
2023-24 Term 2

Suggested Solution of Homework 7

Refer to Textbook: Thomas’ Calculus, Early Transcendentals, 13th Edition

Exercises 16.3

25. Independence of path Show that the values of the integral

∫ B

A
z2 dx+ 2y dy+ 2xz dz

does not depend on the path taken from A to B.

Solution. Write F = M i+N j+Pk = z2i+ 2yj+ 2xzk. Since F is C1 on R3 and satisfies

∂P

∂y
= 0 =

∂N

∂z
,

∂M

∂z
= 2z =

∂P

∂x
,

∂N

∂x
= 0 =

∂M

∂y
,

F is conservative. Therefore,

∫ B

A
z2 dx+ 2y dy + 2xz dz is independent of the path taken

from A to B. J

31. Evaluating a work integral tow ways Let F = ∇(x3y2) and let C be the path in
the xy-plane from (−1, 1) to (1, 1) that consists of the line segment from (−1, 1) to (0, 0)
followed by the line segment from (0, 0) to (1, 1). Evaluate

∫
C F · dr in two ways.

(a) Find parametrizations for the segment that make up C and evaluate the integral.

(b) Use f(x, y) = x3y2 as a potential function for F.

Solution. (a) F = ∇(x3y2) = 3x2y2i + 2x3yj.

Line segment C1 from (−1, 1) to (0, 0): r1(t) = (t− 1)i + (1− t)j, 0 ≤ 1 ≤ t. Then
r′1(t) = i− j, and F · r′1 = 3(t− 1)2(1− t)2 − 2(t− 1)3(1− t) = 5(t− 1)4.

Line segment C2 from (0, 0) to (1, 1) to : r2(t) = ti+tj, 0 ≤ 1 ≤ t. Then r′2(t) = i+j,
and F · r′2 = 3t2t2 + 2t3t = 5t4.

Hence,∫
C
F · dr =

∫
C1

F · dr1 +

∫
C2

F · dr2 =

∫ 1

0
5(t− 1)4 dt+

∫ 1

0
5t4 dt = 2.

(b) Since f(x, y) = x3y2 is a potential function for F,∫
C
F · dr = f(1, 1)− f(−1, 1) = 2.

J



2

Exercises 16.4

4. Verify the conclusion of Green’s Theorem by evaluating both sides of Equations (3) and
(4) for the field F = M i +N j = −x2yi + xy2j. Take the domains of integration to be the
disk R: x2 + y2 ≤ a2 and its bounding circle C: r = (a cos t)i + (a sin t)j, 0 ≤ t ≤ 2π.

Solution. Along the circle C,

M = −a3 cos2 t sin t, N = a3 cos t sin2 t, dx = −a sin t dt, dy = a cos t dt.

In the region R,

∂M

∂x
= −2xy,

∂M

∂y
= −x2, ∂N

∂x
= y2,

∂N

∂y
= 2xy.

Equation (3):∮
C
M dy −N dx =

∫ 2π

0
(−a4 cos3 t sin t+ a4 cos t sin3 t) dt = a4

[
cos4 t

4
+

sin4 t

4

]2π
0

= 0,

∫∫
R

(
∂M

∂x
+
∂N

∂y

)
dx dy =

∫∫
R

(−2xy + 2xy) dx dy = 0.

Equation (4):∮
C
M dx+N dy =

∫ 2π

0
(a4 cos2 t sin2 t+ a4 cos2 t sin2 t) dt =

a4

2

∫ 2π

0
sin2 2t dt

=
a4

4

∫ 4π

0
sin2 u du =

πa4

2
,

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dx dy =

∫∫
R

(y2 + x2) dx dy =

∫ 2π

0

∫ a

0
r2 · r dr dθ =

πa4

2
.

J

7. Use Green’s Theorem to find the counterclockwise circulation and outward flux for the
field F and curve C.

F = (y2 − x2)i + (x2 + y2)j
C: The triangle bounded by y = 0, x = 3, and y = x

Solution. For M := y2 − x2, N := x2 + y2, we have

∂M

∂x
= −2x,

∂M

∂y
= 2y,

∂N

∂x
= 2x,

∂N

∂y
= 2y.

Let R be the region enclosed by the curve C in the plane. By Green’s Theorem,

Couterclockwise circulation =

∮
C
M dx+N dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dx dy

=

∫∫
R

(2x− 2y) dx dy =

∫ 3

0

∫ x

0
(2x− 2y) dy dx =

∫ 3

0
x2 dx = 9;
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Outward flux =

∮
C
M dy −N dx =

∫∫
R

(
∂M

∂x
+
∂N

∂y

)
dx dy

=

∫∫
R

(−2x+ 2y) dx dy = −9.

J

11. Use Green’s Theorem to find the counterclockwise circulation and outward flux for the
field F and curve C.

F = x3y2i + 1
2x

4yj

Solution. For M := x3y2, N := 1
2x

4y, we have

∂M

∂x
= 3x2y2

∂M

∂y
= 2x3y,

∂N

∂x
= 2x3y,

∂N

∂y
=

1

2
x4.

Let R be the region enclosed by the curve C in the plane. By Green’s Theorem,

Couterclockwise circulation =

∮
C
M dx+N dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dx dy

=

∫∫
R

(2x3y − 2x3y) dx dy = 0;

Outward flux =

∮
C
M dy −N dx =

∫∫
R

(
∂M

∂x
+
∂N

∂y

)
dx dy

=

∫∫
R

(3x2y2 +
1

2
x4) dx dy =

∫ 2

0

∫ x

x2−x
(3x2y2 +

1

2
x4) dy dx

=

∫ 2

0

(
x5 − x2(x2 − x)3 +

1

2
x5 − 1

2
x4(x2 − x)

)
dx

=

∫ 2

0

(
3x5 − 7

2
x6 + 3x7 − x8

)
dx =

64

9
.

J

22. Apply Green’s Theorem to evaluate the integral.∮
C

(3y dx+ 2x dy) C: The boundary of 0 ≤ x ≤ π, 0 ≤ y ≤ sinx.
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Solution. For M := 3y, N := 2x, we have

∂M

∂y
= 3,

∂N

∂x
= 2.

Let R be the region enclosed by the curve C in the plane. By Green’s Theorem,∮
C

(3y dx+ 2x dy) =

∫∫
R

(2− 3) dx dy = −
∫ π

0

∫ sinx

0
dy dx = −

∫ π

0
sinx dx = −2.

J

24. Apply Green’s Theorem to evaluate the integral.∮
C

(2x+ y2) dx+ (2xy + 3y) dy

C: Any simple closed curve in the plane for which Green’s Theorem holds.

Solution. Let R be the region enclosed by the curve C in the plane. By Green’s Theorem,∮
C

(2x+ y2) dx+ (2xy + 3y) dy =

∫∫
R

[
∂

∂x
(2xy + 3y)− ∂

∂y

(
2x+ y2

)]
dx dy

=

∫∫
R

(2y − 2y) dx dy = 0.

J

25. Use the Green’s Theorem area formula to find the area of the region enclosed by the curve.

The circle r(t) = (a cos t)i + (a sin t)j, 0 ≤ t ≤ 2π.

Solution. By Green’s Theorem area formula,

Area =
1

2

∮
C
x dy − y dx =

1

2

∫ 2π

0
[(a cos t)(a cos t)− (a sin t)(−a sin t)] dt

=
1

2

∫ 2π

0
a2 dt = πa2.

J

28. Use the Green’s Theorem area formula to find the area of the region enclosed by the curve.

One arch of the cycloid x = t− sin t, y = 1− cos t.

Solution. Let C1 : (x, y) = (t − sin t, 1 − cos t), 0 ≤ t ≤ 2π and C2 : (x, y) = (2π −
t, 0), 0 ≤ t ≤ 2π.
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Since C := C1 ∪ C2 is traversed clockwise, the area enclosed by C is given by

Area =
1

2

∮
−C

x dy − y dx = −1

2

∮
C
x dy − y dx

= −1

2

∮
C1

x dy − y dx− 1

2

∮
C2

x dy − y dx

= −1

2

∫ 2π

0
(0) dt− 1

2

∫ 2π

0
[(t− sin t)(sin t)− (1− cos t)(1− cos t)] dt

= 0− 1

2

∫ 2π

0
(t sin t− 2 + 2 cos t) dt

= −1

2
(−2π − 4π + 0) = 3π.

J

30. Integral dependent only on area Show that the value of∮
C
xy2 dx+ (xy2 + 2x) dy

around any square depends only on the area of the square and not on its location in the
plane.

Solution. Let R be the region enclosed by the curve C in the plane. By Green’s Theorem,∮
C
xy2 dx+ (x2y + 2x) dy =

∫∫
R

[
∂

∂x

(
x2y + 2x

)
− ∂

∂y

(
xy2
)]

dx dy

=

∫∫
R

(2xy + 2− 2xy) dx dy

= 2

∫∫
R
dx dy

= 2× area of the square.

J


