MATH 2020B Advanced Calculus II 2023-24 Term 2 Suggested Solution of Homework 7

Refer to Textbook: Thomas' Calculus, Early Transcendentals, 13 th Edition

Exercises 16.3

25. Independence of path Show that the values of the integral $\int_{A}^{B} z^{2} d x+2 y d y+2 x z d z$ does not depend on the path taken from A to B.

Solution. Write $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}=z^{2} \mathbf{i}+2 y \mathbf{j}+2 x z \mathbf{k}$. Since F is C^{1} on \mathbb{R}^{3} and satisfies

$$
\frac{\partial P}{\partial y}=0=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=2 z=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x}=0=\frac{\partial M}{\partial y}
$$

\mathbf{F} is conservative. Therefore, $\int_{A}^{B} z^{2} d x+2 y d y+2 x z d z$ is independent of the path taken from A to B.
31. Evaluating a work integral tow ways Let $\mathbf{F}=\nabla\left(x^{3} y^{2}\right)$ and let C be the path in the $x y$-plane from $(-1,1)$ to $(1,1)$ that consists of the line segment from $(-1,1)$ to $(0,0)$ followed by the line segment from $(0,0)$ to $(1,1)$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ in two ways.
(a) Find parametrizations for the segment that make up C and evaluate the integral.
(b) Use $f(x, y)=x^{3} y^{2}$ as a potential function for \mathbf{F}.

Solution. (a) $\mathbf{F}=\nabla\left(x^{3} y^{2}\right)=3 x^{2} y^{2} \mathbf{i}+2 x^{3} y \mathbf{j}$.
Line segment C_{1} from $(-1,1)$ to $(0,0)$: $\mathbf{r}_{1}(t)=(t-1) \mathbf{i}+(1-t) \mathbf{j}, \quad 0 \leq 1 \leq t$. Then $\mathbf{r}_{1}^{\prime}(t)=\mathbf{i}-\mathbf{j}$, and $\mathbf{F} \cdot \mathbf{r}_{1}^{\prime}=3(t-1)^{2}(1-t)^{2}-2(t-1)^{3}(1-t)=5(t-1)^{4}$.
Line segment C_{2} from $(0,0)$ to $(1,1)$ to : $\mathbf{r}_{2}(t)=t \mathbf{i}+t \mathbf{j}, \quad 0 \leq 1 \leq t$. Then $\mathbf{r}_{2}^{\prime}(t)=\mathbf{i}+\mathbf{j}$, and $\mathbf{F} \cdot \mathbf{r}_{2}^{\prime}=3 t^{2} t^{2}+2 t^{3} t=5 t^{4}$.
Hence,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}_{1}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}_{2}=\int_{0}^{1} 5(t-1)^{4} d t+\int_{0}^{1} 5 t^{4} d t=2
$$

(b) Since $f(x, y)=x^{3} y^{2}$ is a potential function for \mathbf{F},

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(1,1)-f(-1,1)=2
$$

Exercises 16.4

4. Verify the conclusion of Green's Theorem by evaluating both sides of Equations (3) and (4) for the field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}=-x^{2} y \mathbf{i}+x y^{2} \mathbf{j}$. Take the domains of integration to be the disk $R: x^{2}+y^{2} \leq a^{2}$ and its bounding circle $C: \mathbf{r}=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}, 0 \leq t \leq 2 \pi$.

Solution. Along the circle C,

$$
M=-a^{3} \cos ^{2} t \sin t, \quad N=a^{3} \cos t \sin ^{2} t, \quad d x=-a \sin t d t, \quad d y=a \cos t d t .
$$

In the region R,

$$
\frac{\partial M}{\partial x}=-2 x y, \quad \frac{\partial M}{\partial y}=-x^{2}, \quad \frac{\partial N}{\partial x}=y^{2}, \quad \frac{\partial N}{\partial y}=2 x y
$$

Equation (3):

$$
\begin{gathered}
\oint_{C} M d y-N d x=\int_{0}^{2 \pi}\left(-a^{4} \cos ^{3} t \sin t+a^{4} \cos t \sin ^{3} t\right) d t=a^{4}\left[\frac{\cos ^{4} t}{4}+\frac{\sin ^{4} t}{4}\right]_{0}^{2 \pi}=0, \\
\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y=\iint_{R}(-2 x y+2 x y) d x d y=0
\end{gathered}
$$

Equation (4):

$$
\begin{aligned}
& \begin{aligned}
\oint_{C} M d x+N d y & =\int_{0}^{2 \pi}\left(a^{4} \cos ^{2} t \sin ^{2} t+a^{4} \cos ^{2} t \sin ^{2} t\right) d t=\frac{a^{4}}{2} \int_{0}^{2 \pi} \sin ^{2} 2 t d t \\
& =\frac{a^{4}}{4} \int_{0}^{4 \pi} \sin ^{2} u d u=\frac{\pi a^{4}}{2}
\end{aligned} \\
& \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\iint_{R}\left(y^{2}+x^{2}\right) d x d y=\int_{0}^{2 \pi} \int_{0}^{a} r^{2} \cdot r d r d \theta=\frac{\pi a^{4}}{2}
\end{aligned}
$$

7. Use Green's Theorem to find the counterclockwise circulation and outward flux for the field \mathbf{F} and curve C.
$\mathbf{F}=\left(y^{2}-x^{2}\right) \mathbf{i}+\left(x^{2}+y^{2}\right) \mathbf{j}$
C : The triangle bounded by $y=0, x=3$, and $y=x$
Solution. For $M:=y^{2}-x^{2}, N:=x^{2}+y^{2}$, we have

$$
\frac{\partial M}{\partial x}=-2 x, \quad \frac{\partial M}{\partial y}=2 y, \quad \frac{\partial N}{\partial x}=2 x, \quad \frac{\partial N}{\partial y}=2 y
$$

Let R be the region enclosed by the curve C in the plane. By Green's Theorem,

$$
\begin{aligned}
\text { Couterclockwise circulation } & =\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \\
& =\iint_{R}(2 x-2 y) d x d y=\int_{0}^{3} \int_{0}^{x}(2 x-2 y) d y d x=\int_{0}^{3} x^{2} d x=9
\end{aligned}
$$

$$
\begin{aligned}
\text { Outward flux } & =\oint_{C} M d y-N d x=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y \\
& =\iint_{R}(-2 x+2 y) d x d y=-9
\end{aligned}
$$

11. Use Green's Theorem to find the counterclockwise circulation and outward flux for the field \mathbf{F} and curve C.
$\mathbf{F}=x^{3} y^{2} \mathbf{i}+\frac{1}{2} x^{4} y \mathbf{j}$

Solution. For $M:=x^{3} y^{2}, N:=\frac{1}{2} x^{4} y$, we have

$$
\frac{\partial M}{\partial x}=3 x^{2} y^{2} \quad \frac{\partial M}{\partial y}=2 x^{3} y, \quad \frac{\partial N}{\partial x}=2 x^{3} y, \quad \frac{\partial N}{\partial y}=\frac{1}{2} x^{4} .
$$

Let R be the region enclosed by the curve C in the plane. By Green's Theorem,

$$
\begin{aligned}
\text { Couterclockwise circulation } & =\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \\
& =\iint_{R}\left(2 x^{3} y-2 x^{3} y\right) d x d y=0
\end{aligned}
$$

$$
\begin{aligned}
\text { Outward flux } & =\oint_{C} M d y-N d x=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y \\
& =\iint_{R}\left(3 x^{2} y^{2}+\frac{1}{2} x^{4}\right) d x d y=\int_{0}^{2} \int_{x^{2}-x}^{x}\left(3 x^{2} y^{2}+\frac{1}{2} x^{4}\right) d y d x \\
& =\int_{0}^{2}\left(x^{5}-x^{2}\left(x^{2}-x\right)^{3}+\frac{1}{2} x^{5}-\frac{1}{2} x^{4}\left(x^{2}-x\right)\right) d x \\
& =\int_{0}^{2}\left(3 x^{5}-\frac{7}{2} x^{6}+3 x^{7}-x^{8}\right) d x=\frac{64}{9}
\end{aligned}
$$

22. Apply Green's Theorem to evaluate the integral.

$$
\oint_{C}(3 y d x+2 x d y) \quad C: \text { The boundary of } 0 \leq x \leq \pi, 0 \leq y \leq \sin x .
$$

Solution. For $M:=3 y, N:=2 x$, we have

$$
\frac{\partial M}{\partial y}=3, \quad \frac{\partial N}{\partial x}=2
$$

Let R be the region enclosed by the curve C in the plane. By Green's Theorem,

$$
\oint_{C}(3 y d x+2 x d y)=\iint_{R}(2-3) d x d y=-\int_{0}^{\pi} \int_{0}^{\sin x} d y d x=-\int_{0}^{\pi} \sin x d x=-2
$$

24. Apply Green's Theorem to evaluate the integral.
$\oint_{C}\left(2 x+y^{2}\right) d x+(2 x y+3 y) d y$
C : Any simple closed curve in the plane for which Green's Theorem holds.
Solution. Let R be the region enclosed by the curve C in the plane. By Green's Theorem,

$$
\begin{aligned}
\oint_{C}\left(2 x+y^{2}\right) d x+(2 x y+3 y) d y & =\iint_{R}\left[\frac{\partial}{\partial x}(2 x y+3 y)-\frac{\partial}{\partial y}\left(2 x+y^{2}\right)\right] d x d y \\
& =\iint_{R}(2 y-2 y) d x d y=0
\end{aligned}
$$

25. Use the Green's Theorem area formula to find the area of the region enclosed by the curve. The circle $\mathbf{r}(t)=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}, \quad 0 \leq t \leq 2 \pi$.

Solution. By Green's Theorem area formula,

$$
\begin{aligned}
\text { Area }=\frac{1}{2} \oint_{C} x d y-y d x & =\frac{1}{2} \int_{0}^{2 \pi}[(a \cos t)(a \cos t)-(a \sin t)(-a \sin t)] d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} a^{2} d t=\pi a^{2}
\end{aligned}
$$

28. Use the Green's Theorem area formula to find the area of the region enclosed by the curve.

One arch of the cycloid $x=t-\sin t, \quad y=1-\cos t$.
Solution. Let $C_{1}:(x, y)=(t-\sin t, 1-\cos t), \quad 0 \leq t \leq 2 \pi$ and $C_{2}:(x, y)=(2 \pi-$ $t, 0), \quad 0 \leq t \leq 2 \pi$.

Since $C:=C_{1} \cup C_{2}$ is traversed clockwise, the area enclosed by C is given by

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \oint_{-C} x d y-y d x=-\frac{1}{2} \oint_{C} x d y-y d x \\
& =-\frac{1}{2} \oint_{C_{1}} x d y-y d x-\frac{1}{2} \oint_{C_{2}} x d y-y d x \\
& =-\frac{1}{2} \int_{0}^{2 \pi}(0) d t-\frac{1}{2} \int_{0}^{2 \pi}[(t-\sin t)(\sin t)-(1-\cos t)(1-\cos t)] d t \\
& =0-\frac{1}{2} \int_{0}^{2 \pi}(t \sin t-2+2 \cos t) d t \\
& =-\frac{1}{2}(-2 \pi-4 \pi+0)=3 \pi .
\end{aligned}
$$

30. Integral dependent only on area Show that the value of

$$
\oint_{C} x y^{2} d x+\left(x y^{2}+2 x\right) d y
$$

around any square depends only on the area of the square and not on its location in the plane.

Solution. Let R be the region enclosed by the curve C in the plane. By Green's Theorem,

$$
\begin{aligned}
\oint_{C} x y^{2} d x+\left(x^{2} y+2 x\right) d y & =\iint_{R}\left[\frac{\partial}{\partial x}\left(x^{2} y+2 x\right)-\frac{\partial}{\partial y}\left(x y^{2}\right)\right] d x d y \\
& =\iint_{R}(2 x y+2-2 x y) d x d y \\
& =2 \iint_{R} d x d y \\
& =2 \times \text { area of the square }
\end{aligned}
$$

