MATH 2020B Advanced Calculus II 2023-24 Term 2 Suggested Solution of Homework 6

Refer to Textbook: Thomas' Calculus, Early Transcendentals, 13th Edition

Exercises 16.2

41. A field of tangent vectors

- (a) Find a field $\mathbf{G} = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ in the *xy*-plane with the property that at any point $(a, b) \neq (0, 0)$, *G* is a vector of magnitude $\sqrt{a^2 + b^2}$ tangent to the circle $x^2 + y^2 = a^2 + b^2$ and pointing in the conterclockwise direction. (The field is undefined at (0, 0).)
- (b) How is **G** related to the spin vector field **F** in Figure 16.12?
- **Solution.** (a) $x^2 + y^2 = a^2 + b^2 \implies 2x + 2yy' = 0 \implies y' = -\frac{x}{y}$ is the slope of the tangent line at any point on the circle $\implies y' = -\frac{a}{b}$ at (a, b). Let $\mathbf{v} = -b\mathbf{i} + a\mathbf{j} \implies |\mathbf{v}| = \sqrt{a^2 + b^2}$, with \mathbf{v} in a counterclockwise direction and tangent to the circle. So we have $\mathbf{G} = -y\mathbf{i} + x\mathbf{j}$.
- (b) $\mathbf{G} = (\sqrt{x^2 + y^2})\mathbf{F} = (\sqrt{a^2 + b^2})\mathbf{F}$.
- 44. Two "central" fields Find a field $\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ in the *xy*-plane with the property that at each point $(x, y) \neq (0, 0)$, \mathbf{F} points toward the origin and $|\mathbf{F}|$ is
 - (a) the distance from (x, y) to the origin,
 - (b) inversely proportional to the distance from (x, y) to the origin. (The field is undefined at (0, 0).)

Solution. (a) $-\frac{x\mathbf{i}+y\mathbf{j}}{\sqrt{x^2+y^2}}$ is a unit vector through (x, y) pointing toward the origin. Since $|\mathbf{F}| = \sqrt{x^2 + y^2}$, we have $\mathbf{F} = \sqrt{x^2 + y^2} \left(-\frac{x\mathbf{i}+y\mathbf{j}}{\sqrt{x^2+y^2}}\right) = -x\mathbf{i} - y\mathbf{j}$. (b) We want $|\mathbf{F}| = \frac{C}{\sqrt{x^2+y^2}}$, where C > 0 is a constant $\implies \mathbf{F} = \frac{C}{\sqrt{x^2+y^2}} \left(-\frac{x\mathbf{i}+y\mathbf{j}}{\sqrt{x^2+y^2}}\right) = -C\left(\frac{x\mathbf{i}+y\mathbf{j}}{x^2+y^2}\right)$.

49. **F** is the velocity field of a fluid flowing through a region in space. Find the flow along the given curve in the direction of increasing t.

$$\mathbf{F} = (x - z)\mathbf{i} + x\mathbf{k}; \quad \mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{k}, \quad 0 \le t \le \pi.$$

Solution. $\mathbf{F} = (\cos t - \sin t)\mathbf{i} + (\cos t)\mathbf{k}$ and $\frac{d\mathbf{r}}{dt} = (-\sin t)\mathbf{i} + (\cos t)\mathbf{k} \implies \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = -\sin t\cos t + 1$. Hence,

Flow =
$$\int_0^{\pi} (-\sin t \cos t + 1) dt = \pi.$$

51. Circulation Find the circulation of $\mathbf{F} = 2x\mathbf{i} + 2z\mathbf{j} + 2y\mathbf{k}$ around the closed path consisting of the following three curves traversed in the direction of increasing t.

$$C_{1}: \mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le \pi/2$$

$$C_{2}: \mathbf{r}(t) = \mathbf{j} + (\pi/2)(1-t)\mathbf{k}, \quad 0 \le t \le 1$$

$$C_{3}: \mathbf{r}(t) = t\mathbf{i} + (1-t)\mathbf{j}, \quad 0 \le t \le 1.$$

$$\overset{z}{\uparrow} \qquad \begin{pmatrix} 0, 1, \frac{\pi}{2} \end{pmatrix}$$

Solution. $C_1 : \mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le \pi/2 \implies \mathbf{F} = (2\cos t)\mathbf{i} + 2t\mathbf{j} + (2\sin t)\mathbf{k} \text{ and } \frac{d\mathbf{r}}{dt} = (-\sin t)\mathbf{i} + (\cos t)\mathbf{j} + \mathbf{k} \implies \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = -2\cos t\sin t + 2t\cos t + 2\sin t.$ Hence,

Flow₁ =
$$\int_0^{\pi/2} (-2\cos t\sin t + 2t\cos t + 2\sin t) dt = \left[\frac{1}{2}\cos 2t + 2t\sin t\right]_0^{\pi/2} = -1 + \pi t$$

 $C_2 : \mathbf{r}(t) = \mathbf{j} + (\pi/2)(1-t)\mathbf{k}, \quad 0 \le t \le 1 \implies \mathbf{F} = \pi(1-t)\mathbf{j} + 2\mathbf{k} \text{ and } \frac{d\mathbf{r}}{dt} = -\pi/2\mathbf{k}$ $\implies \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = -\pi. \text{ Hence,}$ $\text{Flow}_2 = \int_0^1 (-\pi) \, dt = -\pi.$

 $C_3: \mathbf{r}(t) = t\mathbf{i} + (1-t)\mathbf{j}, \quad 0 \le t \le 1 \implies \mathbf{F} = 2t\mathbf{i} + 2(1-t)\mathbf{k} \text{ and } \frac{d\mathbf{r}}{dt} = \mathbf{i} - \mathbf{j} \implies \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = 2t.$ Hence,

Flow₃ =
$$\int_0^1 (2t) dt = 1.$$

Therefore,

Circulation =
$$Flow_1 + Flow_2 + Flow_3 = (-1 + \pi) + (-\pi) + 1 = 0$$

54. Flow of a gradient field Find the flow of the field $\mathbf{F} = \nabla (xy^2z^3)$:

- (a) Once around the curve C in Exercise 52, clockwise as viewed from above.
- (b) Along the line segment from (1, 1, 1) to (2, 1, -1).

Solution. (a) $\mathbf{F} = \nabla(xy^2z^3) \implies \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = \frac{d}{dt}f(\mathbf{r}(t))$, where $f(x, y, z) = xy^2z^3$. Hence,

 $\text{Flow} = \oint_C \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = \int_a^b \frac{d}{dt} f(\mathbf{r}(t)) = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) = 0, \quad \text{since } C \text{ is an entire ellipse.}$

(b)

Flow =
$$\int_C \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = \int_{(1,1,1)}^{(2,1,-1)} \frac{d}{dt} f(\mathbf{r}(t)) dt = [xy^2 z^3]_{(1,1,1)}^{(2,1,-1)} = -2 - 1 = -3.$$

◄	

5. Is the field $\mathbf{F} = (z+y)\mathbf{i} + z\mathbf{j} + (y+x)\mathbf{k}$ conservative or not?

Solution. Write $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k} = (z+y)\mathbf{i} + z\mathbf{j} + (y+x)\mathbf{k}$. Since $\frac{\partial M}{\partial y} = 1 \neq 0 = \frac{\partial N}{\partial x}$, **F** is not conservative.

6. Is the field $\mathbf{F} = (e^x \cos y)\mathbf{i} - (e^x \sin y)\mathbf{j} + z\mathbf{k}$ conservative or not?

Solution. Write $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k} = (e^x \cos y)\mathbf{i} - (e^x \sin y)\mathbf{j} + z\mathbf{k}$. Clearly, F is C^1 on \mathbb{R}^3 , which is connected and simply connected. Since

$$\frac{\partial P}{\partial y} = 0 = \frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z} = 0 = \frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x} = -e^x \sin y = \frac{\partial M}{\partial y},$$

F is conservative.

10. Find a potential function f for the field $\mathbf{F} = (y \sin z)\mathbf{i} + (x \sin z)\mathbf{j} + (xy \cos z)\mathbf{k}$.

Solution. Suppose f is a potential function, that is $\nabla f = \mathbf{F}$. Then

$$\frac{\partial f}{\partial x} = y \sin z \implies f(x, y, z) = xy \sin z + g(y, z);$$
$$\frac{\partial f}{\partial y} = x \sin z + \frac{\partial g}{\partial y} = x \sin z \implies \frac{\partial g}{\partial y} = 0 \implies g(y, z) = h(z);$$
$$\frac{\partial f}{\partial z} = xy \cos z + h'(z) = xy \cos z \implies h'(z) = 0 \implies h(z) = C.$$

Hence, a potential function for **F** is $f(x, y, z) = xy \sin z + C$, where C is a constant.

15. Show that the differential form in the integral is exact. Then evaluate the integral.

$$\int_{(0,0,0)}^{(1,2,3)} 2xy \, dx + (x^2 - z^2) \, dy - 2yz \, dz.$$

Solution. Denote the differential form as M dx + N dy + P dz. Clearly, it is C^1 on \mathbb{R}^3 , which is connected and simply connected. It is exact because

$$\frac{\partial P}{\partial y} = -2z = \frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z} = 0 = \frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x} = 2x = \frac{\partial M}{\partial y}.$$

Suppose $\nabla f = 2xy\mathbf{i} + (x^2 - z^2)\sin x\mathbf{j} - 2yz\mathbf{k}$. Then

$$\frac{\partial f}{\partial x} = 2xy \implies f(x, y, z) = x^2y + g(y, z);$$

$$\frac{\partial f}{\partial y} = x^2 + \frac{\partial g}{\partial y} = x^2 - z^2 \implies \frac{\partial g}{\partial y} = -z^2 \implies g(y, z) = -yz^2 + h(z);$$
$$\frac{\partial f}{\partial z} = -2yz + h'(z) = -2yz \implies h'(z) = 0 \implies h(z) = C.$$

Hence, $f(x, y, z) = x^2y - yz^2 + C$, where C is a constant. Therefore,

$$\int_{(0,0,0)}^{(1,2,3)} 2xy \, dx + (x^2 - z^2) \, dy - 2yz \, dz = f(1,2,3) - f(0,0,0) = -16.$$

◀

18. Find a potential function for the field and evaluate the integral as in Example 6.

$$\int_{(0,2,1)}^{(1,\pi/2,2)} 2\cos y \, dx + \left(\frac{1}{y} - 2x\sin y\right) \, dy + \frac{1}{z} \, dz.$$

Solution. Denote the differential form as M dx + N dy + P dz. Note that $D \coloneqq \{(x, y, z) \in \mathbb{R}^3 : y > 0, z > 0\}$ is open, connected and simply connected, and it contains the points $(0, 2, 1), (1, \pi/2, 2)$. Clearly the differential form is C^1 on D. It is exact because

$$\frac{\partial P}{\partial y} = 0 = \frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z} = 0 = \frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x} = -2\sin y = \frac{\partial M}{\partial y}.$$

Suppose $\nabla f = 2\cos y\mathbf{i} + \left(\frac{1}{y} - 2x\sin y\right)\mathbf{j} + \frac{1}{z}\mathbf{k}$. Then

$$\frac{\partial f}{\partial x} = 2\cos y \implies f(x, y, z) = 2x\cos y + g(y, z);$$

$$\frac{\partial f}{\partial y} = -2x \sin y + \frac{\partial g}{\partial y} = \frac{1}{y} - 2x \sin y \implies \frac{\partial g}{\partial y} = \frac{1}{y} \implies g(y, z) = \ln|y| + h(z);$$
$$\frac{\partial f}{\partial z} = h'(z) = \frac{1}{z} \implies h(z) = \ln|z|.$$

Hence, $f(x, y, z) = 2x \cos y + \ln |y| + \ln |z| + C$, where C is a constant. Therefore,

$$\int_{(0,2,1)}^{(1,\pi/2,2)} 2\cos y \, dx + \left(\frac{1}{y} - 2x\sin y\right) \, dy + \frac{1}{z} \, dz = f(1,\pi/2,2) - f(0,2,1) = \ln\frac{\pi}{2}.$$

/	1	
1	1	