MATH 2020B Advanced Calculus II 2023-24 Term 2 Suggested Solution of Homework 6

Refer to Textbook: Thomas' Calculus, Early Transcendentals, 1 13th Edition

Exercises 16.2

41. A field of tangent vectors

(a) Find a field $\mathbf{G}=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ in the $x y$-plane with the property that at any point $(a, b) \neq(0,0), G$ is a vector of magnitude $\sqrt{a^{2}+b^{2}}$ tangent to the circle $x^{2}+y^{2}=$ $a^{2}+b^{2}$ and pointing in the couterclockwise direction. (The field is undefined at $(0,0)$.)
(b) How is \mathbf{G} related to the spin vector field \mathbf{F} in Figure 16.12?

Solution. (a) $x^{2}+y^{2}=a^{2}+b^{2} \Longrightarrow 2 x+2 y y^{\prime}=0 \Longrightarrow y^{\prime}=-\frac{x}{y}$ is the slope of the tangent line at any point on the circle $\Longrightarrow y^{\prime}=-\frac{a}{b}$ at (a, b). Let $\mathbf{v}=-b \mathbf{i}+a \mathbf{j} \Longrightarrow$ $|\mathbf{v}|=\sqrt{a^{2}+b^{2}}$, with \mathbf{v} in a counterclockwise direction and tangent to the circle. So we have $\mathbf{G}=-y \mathbf{i}+x \mathbf{j}$.
(b) $\mathbf{G}=\left(\sqrt{x^{2}+y^{2}}\right) \mathbf{F}=\left(\sqrt{a^{2}+b^{2}}\right) \mathbf{F}$.
44. Two "central" fields Find a field $\mathbf{F}=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ in the $x y$-plane with the property that at each point $(x, y) \neq(0,0), \mathbf{F}$ points toward the origin and $|\mathbf{F}|$ is
(a) the distance from (x, y) to the origin,
(b) inversely proportional to the distance from (x, y) to the origin. (The field is undefined at $(0,0)$.)

Solution. (a) $-\frac{x \mathbf{i}+y \mathbf{j}}{\sqrt{x^{2}+y^{2}}}$ is a unit vector through (x, y) pointing toward the origin. Since $|\mathbf{F}|=\sqrt{x^{2}+y^{2}}$, we have $\mathbf{F}=\sqrt{x^{2}+y^{2}}\left(-\frac{x \mathbf{i}+y \mathbf{j}}{\sqrt{x^{2}+y^{2}}}\right)=-x \mathbf{i}-y \mathbf{j}$.
(b) We want $|\mathbf{F}|=\frac{C}{\sqrt{x^{2}+y^{2}}}$, where $C>0$ is a constant $\Longrightarrow \mathbf{F}=\frac{C}{\sqrt{x^{2}+y^{2}}}\left(-\frac{x \mathbf{i}+y \mathbf{j}}{\sqrt{x^{2}+y^{2}}}\right)=$ $-C\left(\frac{x \mathbf{i}+y \mathbf{j}}{x^{2}+y^{2}}\right)$.
49. \mathbf{F} is the velocity field of a fluid flowing through a region in space. Find the flow along the given curve in the direction of increasing t.
$\mathbf{F}=(x-z) \mathbf{i}+x \mathbf{k} ; \quad \mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{k}, \quad 0 \leq t \leq \pi$.
Solution. $\mathbf{F}=(\cos t-\sin t) \mathbf{i}+(\cos t) \mathbf{k}$ and $\frac{d \mathbf{r}}{d t}=(-\sin t) \mathbf{i}+(\cos t) \mathbf{k} \Longrightarrow \mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=$ $-\sin t \cos t+1$. Hence,

$$
\text { Flow }=\int_{0}^{\pi}(-\sin t \cos t+1) d t=\pi
$$

51. Circulation Find the circulation of $\mathbf{F}=2 x \mathbf{i}+2 z \mathbf{j}+2 y \mathbf{k}$ around the closed path consisting of the following three curves traversed in the direction of increasing t.

$$
\begin{array}{ll}
C_{1}: & \mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq \pi / 2 \\
C_{2}: & \mathbf{r}(t)=\mathbf{j}+(\pi / 2)(1-t) \mathbf{k}, \quad 0 \leq t \leq 1 \\
C_{3}: & \mathbf{r}(t)=t \mathbf{i}+(1-t) \mathbf{j}, \quad 0 \leq t \leq 1 .
\end{array}
$$

Solution. $C_{1}: \mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq \pi / 2 \Longrightarrow \mathbf{F}=(2 \cos t) \mathbf{i}+2 t \mathbf{j}+$ $(2 \sin t) \mathbf{k}$ and $\frac{d \mathbf{r}}{d t}=(-\sin t) \mathbf{i}+(\cos t) \mathbf{j}+\mathbf{k} \Longrightarrow \mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=-2 \cos t \sin t+2 t \cos t+2 \sin t$. Hence,

Flow $_{1}=\int_{0}^{\pi / 2}(-2 \cos t \sin t+2 t \cos t+2 \sin t) d t=\left[\frac{1}{2} \cos 2 t+2 t \sin t\right]_{0}^{\pi / 2}=-1+\pi$.
$C_{2}: \mathbf{r}(t)=\mathbf{j}+(\pi / 2)(1-t) \mathbf{k}, \quad 0 \leq t \leq 1 \Longrightarrow \mathbf{F}=\pi(1-t) \mathbf{j}+2 \mathbf{k}$ and $\frac{d \mathbf{r}}{d t}=-\pi / 2 \mathbf{k}$ $\Longrightarrow \mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=-\pi$. Hence,

$$
\mathrm{Flow}_{2}=\int_{0}^{1}(-\pi) d t=-\pi .
$$

$C_{3}: \mathbf{r}(t)=t \mathbf{i}+(1-t) \mathbf{j}, \quad 0 \leq t \leq 1 \Longrightarrow \mathbf{F}=2 t \mathbf{i}+2(1-t) \mathbf{k}$ and $\frac{d \mathbf{r}}{d t}=\mathbf{i}-\mathbf{j} \Longrightarrow \mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=2 t$. Hence,

$$
\text { Flow }_{3}=\int_{0}^{1}(2 t) d t=1
$$

Therefore,

$$
\text { Circulation }=\text { Flow }_{1}+\text { Flow }_{2}+\text { Flow }_{3}=(-1+\pi)+(-\pi)+1=0 .
$$

54. Flow of a gradient field Find the flow of the field $\mathbf{F}=\nabla\left(x y^{2} z^{3}\right)$:
(a) Once around the curve C in Exercise 52, clockwise as viewed from above.
(b) Along the line segment from $(1,1,1)$ to $(2,1,-1)$.

Solution. (a) $\mathbf{F}=\nabla\left(x y^{2} z^{3}\right) \Longrightarrow \mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=\frac{d}{d t} f(\mathbf{r}(t))$, where $f(x, y, z)=x y^{2} z^{3}$. Hence,
Flow $=\oint_{C} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=\int_{a}^{b} \frac{d}{d t} f(\mathbf{r}(t))=f(\mathbf{r}(b))-f(\mathbf{r}(a))=0, \quad$ since C is an entire ellipse.
(b)

$$
\text { Flow }=\int_{C} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=\int_{(1,1,1)}^{(2,1,-1)} \frac{d}{d t} f(\mathbf{r}(t)) d t=\left[x y^{2} z^{3}\right]_{(1,1,1)}^{(2,1,-1)}=-2-1=-3 .
$$

Exercises 16.3

5. Is the field $\mathbf{F}=(z+y) \mathbf{i}+z \mathbf{j}+(y+x) \mathbf{k}$ conservative or not?

Solution. Write $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}=(z+y) \mathbf{i}+z \mathbf{j}+(y+x) \mathbf{k}$.
Since $\frac{\partial M}{\partial y}=1 \neq 0=\frac{\partial N}{\partial x}, \mathbf{F}$ is not conservative.
6. Is the field $\mathbf{F}=\left(e^{x} \cos y\right) \mathbf{i}-\left(e^{x} \sin y\right) \mathbf{j}+z \mathbf{k}$ conservative or not?

Solution. Write $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}=\left(e^{x} \cos y\right) \mathbf{i}-\left(e^{x} \sin y\right) \mathbf{j}+z \mathbf{k}$. Clearly, F is C^{1} on \mathbb{R}^{3}, which is connected and simply connected. Since

$$
\frac{\partial P}{\partial y}=0=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=0=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x}=-e^{x} \sin y=\frac{\partial M}{\partial y},
$$

\mathbf{F} is conservative.
10. Find a potential function f for the field $\mathbf{F}=(y \sin z) \mathbf{i}+(x \sin z) \mathbf{j}+(x y \cos z) \mathbf{k}$.

Solution. Suppose f is a potential function, that is $\nabla f=\mathbf{F}$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=y \sin z \Longrightarrow f(x, y, z)=x y \sin z+g(y, z) ; \\
\frac{\partial f}{\partial y}=x \sin z+\frac{\partial g}{\partial y}=x \sin z \Longrightarrow \frac{\partial g}{\partial y}=0 \Longrightarrow g(y, z)=h(z) ; \\
\frac{\partial f}{\partial z}=x y \cos z+h^{\prime}(z)=x y \cos z \Longrightarrow h^{\prime}(z)=0 \Longrightarrow h(z)=C .
\end{gathered}
$$

Hence, a potential function for \mathbf{F} is $f(x, y, z)=x y \sin z+C$, where C is a constant.
15. Show that the differential form in the integral is exact. Then evaluate the integral.

$$
\int_{(0,0,0)}^{(1,2,3)} 2 x y d x+\left(x^{2}-z^{2}\right) d y-2 y z d z .
$$

Solution. Denote the differential form as $M d x+N d y+P d z$. Clearly, it is C^{1} on \mathbb{R}^{3}, which is connected and simply connected. It is exact because

$$
\frac{\partial P}{\partial y}=-2 z=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=0=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x}=2 x=\frac{\partial M}{\partial y} .
$$

Suppose $\nabla f=2 x y \mathbf{i}+\left(x^{2}-z^{2}\right) \sin x \mathbf{j}-2 y z \mathbf{k}$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x y \\
\left.\frac{\partial f}{\partial y}=x^{2}+\frac{\partial g}{\partial y}=x^{2}-z^{2} \Longrightarrow \frac{\partial g}{\partial y}=-z^{2} \Longrightarrow g(y, z)=-z\right)=x^{2} y+g(y, z) ; \\
\frac{\partial f}{\partial z}=-2 y z+h^{2}(z)=-2 y z \Longrightarrow h^{\prime}(z)=0 \Longrightarrow h(z)=C .
\end{gathered}
$$

Hence, $f(x, y, z)=x^{2} y-y z^{2}+C$, where C is a constant. Therefore,

$$
\int_{(0,0,0)}^{(1,2,3)} 2 x y d x+\left(x^{2}-z^{2}\right) d y-2 y z d z=f(1,2,3)-f(0,0,0)=-16
$$

18. Find a potential function for the field and evaluate the integral as in Example 6.

$$
\int_{(0,2,1)}^{(1, \pi / 2,2)} 2 \cos y d x+\left(\frac{1}{y}-2 x \sin y\right) d y+\frac{1}{z} d z .
$$

Solution. Denote the differential form as $M d x+N d y+P d z$. Note that $D:=\{(x, y, z) \in$ $\left.\mathbb{R}^{3}: y>0, z>0\right\}$ is open, connected and simply connected, and it contains the points $(0,2,1),(1, \pi / 2,2)$. Clearly the differential form is C^{1} on D. It is exact because

$$
\frac{\partial P}{\partial y}=0=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=0=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x}=-2 \sin y=\frac{\partial M}{\partial y} .
$$

Suppose $\nabla f=2 \cos y \mathbf{i}+\left(\frac{1}{y}-2 x \sin y\right) \mathbf{j}+\frac{1}{z} \mathbf{k}$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 \cos y \Longrightarrow f(x, y, z)=2 x \cos y+g(y, z) ; \\
\frac{\partial f}{\partial y}=-2 x \sin y+\frac{\partial g}{\partial y}=\frac{1}{y}-2 x \sin y \Longrightarrow \frac{\partial g}{\partial y}=\frac{1}{y} \Longrightarrow g(y, z)=\ln |y|+h(z) ; \\
\frac{\partial f}{\partial z}=h^{\prime}(z)=\frac{1}{z} \Longrightarrow h(z)=\ln |z| .
\end{gathered}
$$

Hence, $f(x, y, z)=2 x \cos y+\ln |y|+\ln |z|+C$, where C is a constant. Therefore,

$$
\int_{(0,2,1)}^{(1, \pi / 2,2)} 2 \cos y d x+\left(\frac{1}{y}-2 x \sin y\right) d y+\frac{1}{z} d z=f(1, \pi / 2,2)-f(0,2,1)=\ln \frac{\pi}{2} .
$$

