MATH 2020B Advanced Calculus II 2023-24 Term 2 Suggested Solution of Homework 10

Refer to Textbook: Thomas' Calculus, Early Transcendentals, 13th Edition

Exercises 16.8

5. Use the Divergence Theorem to find the outward flux of \mathbf{F} across the boundary of the region D.

Cube
$$\mathbf{F} = (y - x)\mathbf{i} + (z - y)\mathbf{j} + (y - x)\mathbf{k}$$

D: The cube bounded by the planes $x = \pm 1$, $y = \pm 1$, and $z = \pm 1$.

Solution. $\nabla \cdot \mathbf{F} = -2$. By Divergence Theorem,

Flux =
$$\iiint_D \nabla \cdot \mathbf{F} \, dV = \int_{-1}^1 \int_{-1}^1 \int_{-1}^1 -2 \, dx \, dy \, dz = -2(2^3) = -16.$$

8. Use the Divergence Theorem to find the outward flux of \mathbf{F} across the boundary of the region D.

Sphere
$$\mathbf{F} = x^2 \mathbf{i} + xz \mathbf{j} + 3z \mathbf{k}$$

D: The solid sphere $x^2 + y^2 + z^2 \le 4$.

Solution. $\nabla \cdot \mathbf{F} = 2x + 3$. By Divergence Theorem,

Flux =
$$\iiint_D \nabla \cdot \mathbf{F} \, dV = \int_0^{2\pi} \int_0^{\pi} \int_0^2 (2\rho \sin \phi \cos \theta + 3)(\rho^2 \sin \phi) \, d\rho \, d\phi \, d\theta$$
$$= 32\pi.$$

10. Cylindrical can $\mathbf{F} = (6x^2 + 2xy)\mathbf{i} + (2y + x^2z)\mathbf{j} + 4x^2y^3\mathbf{k}$

D: The region cut from the first octant by the cylinder $x^2 + y^2 = 4$ and the plane z = 3.

Solution. $\nabla \cdot \mathbf{F} = 12x + 2y + 2$. By Divergence Theorem,

Flux =
$$\iiint_D \nabla \cdot \mathbf{F} \, dV = \int_0^3 \int_0^{\pi/2} \int_0^2 (12r \cos \theta + 2r \sin \theta + 2) \, r dr \, d\theta \, dz$$

= 112 + 6\pi.

15. Thick sphere $\mathbf{F} = (5x^3 + 12xy^2)\mathbf{i} + (y^3 + e^y \sin z)\mathbf{j}$

D: The solid region between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 2$.

Solution. $\nabla \cdot \mathbf{F} = 15x^2 + 15y^2 + 15z^2 = 15\rho^2$. By Divergence Theorem,

Flux =
$$\iiint_{D} \nabla \cdot \mathbf{F} \, dV = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{1}^{\sqrt{2}} (15\rho^{2}) (\rho^{2} \sin \phi) \, d\rho \, d\phi \, d\theta$$
$$= \left(48\sqrt{2} - 12\right) \pi.$$

19. Let $\mathbf{F} = (y\cos 2x)\mathbf{i} + (y^2\sin 2x)\mathbf{j} + (x^2y + z)\mathbf{k}$. Is there a vector field \mathbf{A} such that $\mathbf{F} = \nabla \times \mathbf{A}$? Explain your answer.

Solution. Suppose **A** is a field such that $\nabla \times \mathbf{A} = \mathbf{F}$. Then

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

but

$$\nabla \cdot \mathbf{F} = (-2y\sin 2x) + (2y\sin 2x) + 1 = 1 \neq 0.$$

Contradiction. So no such field **A** exists.

20. Outward flux of a gradient field Let S be the surface of the portion of the solid sphere $x^2 + y^2 + z^2 \le a^2$ that lies in the first octant and let $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$. Calculate

$$\iint_{S} \nabla f \cdot \mathbf{n} \, d\sigma.$$

 $(\nabla f \cdot \mathbf{n})$ is the derivative of f in the direction of outward normal \mathbf{n} .)

Solution. From the Divergence Theorem,

$$\iint_{S} \nabla f \cdot \mathbf{n} \, d\sigma = \iiint_{D} \nabla \cdot (\nabla f) \, dV = \iiint_{D} \left(\frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}} + \frac{\partial^{2} f}{\partial z^{2}} \right) \, dV.$$

Now,

$$\frac{\partial f}{\partial x} = \frac{x}{x^2 + y^2 + z^2}, \qquad \frac{\partial^2 f}{\partial x^2} = \frac{-x^2 + y^2 + z^2}{(x^2 + y^2 + z^2)^2}$$

and so,

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \frac{x^2 + y^2 + z^2}{(x^2 + y^2 + z^2)^2} = \frac{1}{x^2 + y^2 + z^2}.$$

Therefore,

$$\iint_{S} \nabla f \cdot \mathbf{n} \, d\sigma = \iiint_{D} \frac{1}{x^2 + y^2 + z^2} \, dV = \int_{0}^{\pi/2} \int_{0}^{\pi/2} \int_{0}^{a} \frac{\rho^2 \sin \phi}{\rho^2} \, d\rho \, d\phi \, d\theta = \frac{\pi a}{2}.$$

23. Calculate the net outward flux of the vector field

$$\mathbf{F} = xy\mathbf{i} + (\sin xz + y^2)\mathbf{j} + (e^{xy^2} + z)\mathbf{k}$$

over the surface S surrounding the region D bounded by the planes y = 0, z = 0, z = 2 - y and the parabolic cylinder $z = 1 - x^2$.

Solution. $\nabla \cdot \mathbf{F} = y + 2y + 1 = 3y + 1$. By Divergence Theorem,

$$\begin{aligned} \operatorname{Flux} &= \iiint_D \nabla \cdot \mathbf{F} \, dV = \int_{-1}^1 \int_0^{1-x^2} \int_0^{2-z} (3y+1) \, dy \, dz \, dx \\ &= \int_{-1}^1 \int_0^{1-x^2} \left(\frac{3}{2} (2-z)^2 + (2-z) \right) \, dz \, dx \\ &= \int_{-1}^1 \left(-\frac{(1+x^2)^3}{2} - \frac{(1+x^2)^2}{2} + 6 \right) \, dx \\ &= \frac{776}{105}. \end{aligned}$$

25. Let **F** be a differentiable vector field and let g(x, y, z) be a differentiable scalar function. Verify the following identities.

(a)
$$\nabla \cdot (g\mathbf{F}) = g\nabla \cdot \mathbf{F} + \nabla g \cdot \mathbf{F}$$

(b)
$$\nabla \times (g\mathbf{F}) = g\nabla \times \mathbf{F} + \nabla g \times \mathbf{F}$$

Solution. Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$.

(a)

$$\begin{split} \nabla \cdot (g\mathbf{F}) &= \frac{\partial}{\partial x} (gM) + \frac{\partial}{\partial y} (gN) + \frac{\partial}{\partial z} (gP) \\ &= \left(g \frac{\partial M}{\partial x} + M \frac{\partial g}{\partial x} \right) + \left(g \frac{\partial N}{\partial y} + N \frac{\partial g}{\partial y} \right) + \left(g \frac{\partial P}{\partial z} + P \frac{\partial g}{\partial z} \right) \\ &= g \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z} \right) + \left(M \frac{\partial g}{\partial x} + N \frac{\partial g}{\partial y} + P \frac{\partial g}{\partial z} \right) \\ &= g \nabla \cdot \mathbf{F} + \nabla g \cdot \mathbf{F} \end{split}$$

(b)

$$\begin{split} \nabla \cdot (g\mathbf{F}) &= \left[\frac{\partial}{\partial y} (gP) - \frac{\partial}{\partial z} (gN) \right] \mathbf{i} + \left[\frac{\partial}{\partial z} (gM) - \frac{\partial}{\partial x} (gP) \right] \mathbf{j} + \left[\frac{\partial}{\partial x} (gN) - \frac{\partial}{\partial y} (gM) \right] \mathbf{k} \\ &= \left(g \frac{\partial P}{\partial y} - g \frac{\partial N}{\partial z} \right) \mathbf{i} + \left(P \frac{\partial g}{\partial y} - N \frac{\partial g}{\partial z} \right) \mathbf{i} + \left(g \frac{\partial M}{\partial z} - g \frac{\partial P}{\partial x} \right) \mathbf{j} + \left(M \frac{\partial g}{\partial z} - P \frac{\partial g}{\partial x} \right) \mathbf{j} \\ &+ \left(g \frac{\partial N}{\partial x} - g \frac{\partial M}{\partial y} \right) \mathbf{k} + \left(N \frac{\partial g}{\partial x} - M \frac{\partial g}{\partial y} \right) \mathbf{k} \\ &= g \nabla \times \mathbf{F} + \nabla g \times \mathbf{F} \end{split}$$

26. Let \mathbf{F}_1 and \mathbf{F}_2 be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.

(a)
$$\nabla \cdot (a\mathbf{F}_1 + b\mathbf{F}_2) = a\nabla \cdot \mathbf{F}_1 + b\nabla \cdot \mathbf{F}_2$$

(b)
$$\nabla \times (a\mathbf{F}_1 + b\mathbf{F}_2) = a\nabla \times \mathbf{F}_1 + b\nabla \times \mathbf{F}_2$$

(c)
$$\nabla \cdot (\mathbf{F}_1 \times \mathbf{F}_2) = \mathbf{F}_2 \cdot \nabla \times \mathbf{F}_1 - \mathbf{F}_1 \cdot \nabla \times \mathbf{F}_2$$

Solution. Only (c) is provided since (a) and (b) are straightforward.

Let
$$\mathbf{F}_1 = M_1 \mathbf{i} + N_1 \mathbf{j} + P_1 \mathbf{k}$$
 and $\mathbf{F}_2 = M_2 \mathbf{i} + N_2 \mathbf{j} + P_2 \mathbf{k}$. Then

$$\mathbf{F}_1 \times \mathbf{F}_2 = (N_1 P_2 - P_1 N_2) \mathbf{i} - (M_1 P_2 - P_1 M_2) \mathbf{j} + (M_1 N_2 - N_1 M_2) \mathbf{k},$$

and so

$$\nabla \cdot (\mathbf{F}_{1} \times \mathbf{F}_{2}) = \left(P_{2} \frac{\partial N_{1}}{\partial x} + N_{1} \frac{\partial P_{2}}{\partial x} - N_{2} \frac{\partial P_{1}}{\partial x} - P_{1} \frac{\partial N_{2}}{\partial x} \right) - \left(P_{2} \frac{\partial M_{1}}{\partial y} + M_{1} \frac{\partial P_{2}}{\partial y} - M_{2} \frac{\partial P_{1}}{\partial y} - P_{1} \frac{\partial M_{2}}{\partial y} \right)$$

$$+ \left(N_{2} \frac{\partial M_{1}}{\partial z} + M_{1} \frac{\partial N_{2}}{\partial z} - M_{2} \frac{\partial N_{1}}{\partial z} - N_{1} \frac{\partial M_{2}}{\partial z} \right)$$

$$= M_{2} \left(\frac{\partial P_{1}}{\partial y} - \frac{\partial N_{1}}{\partial z} \right) + N_{2} \left(\frac{\partial M_{1}}{\partial z} - \frac{\partial P_{1}}{\partial x} \right) + P_{2} \left(\frac{\partial N_{1}}{\partial x} - \frac{\partial M_{1}}{\partial y} \right)$$

$$- M_{1} \left(\frac{\partial P_{2}}{\partial y} - \frac{\partial N_{2}}{\partial z} \right) - N_{1} \left(\frac{\partial M_{2}}{\partial z} - \frac{\partial P_{2}}{\partial x} \right) - P_{1} \left(\frac{\partial N_{2}}{\partial x} - \frac{\partial M_{2}}{\partial y} \right)$$

$$= \mathbf{F}_{2} \cdot \nabla \times \mathbf{F}_{1} - \mathbf{F}_{1} \cdot \nabla \times \mathbf{F}_{2}.$$

29. Green's first formula Suppose that f and g are scalar functions with continuous firstand second-order partial derivatives through- out a region D that is bounded by a closed piecewise smooth surface S. Show that

$$\iint_{S} f \nabla g \cdot \mathbf{n} \, d\sigma = \iiint_{D} (f \nabla^{2} g + \nabla f \cdot \nabla g) \, dV. \tag{10}$$

Equation (10) is **Green's first formula**. (Hint: Apply the Divergence Theorem to the field $\mathbf{F} = f \nabla g$.)

Solution. By the Divergence Theorem,

$$\begin{split} \iint_{S} f \nabla g \cdot \mathbf{n} \, d\sigma &= \iiint_{D} \nabla \cdot (f \nabla g) \, dV \\ &= \iiint_{D} \left(f \frac{\partial^{2} g}{\partial x^{2}} + \frac{\partial f}{\partial x} \frac{\partial g}{\partial x} + f \frac{\partial^{2} g}{\partial y^{2}} + \frac{\partial f}{\partial y} \frac{\partial g}{\partial y} + f \frac{\partial^{2} g}{\partial z^{2}} + \frac{\partial f}{\partial z} \frac{\partial g}{\partial z} \right) \, dV \\ &= \iiint_{D} (f \nabla^{2} g + \nabla f \cdot \nabla g) \, dV. \end{split}$$

1_ _