eg $63=$ Let \vec{F} be a vecta field such that $\vec{\nabla} \times \vec{F}=\overrightarrow{0}$ and defined on a region containing the surface, S with unit hamal vector field \hat{n} as in the figure:
red: scouted wot \hat{n} (surface)

The boundary C of S has 2 components $C_{1} \& C_{2}$ at the level $z=z_{1} \& z=z_{2}$ respectively.

If both C_{1}, C_{2} viented anti-clocknisely with respect to the "horizontal planes" (i.e. \hat{k})
Then when C oriented anti-clockwisely with respect to the surface nomal \hat{n}, we have

$$
C=C_{1}-C_{2}
$$

And Stokes' Them \Rightarrow

$$
\begin{aligned}
0= & \iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma=\oint_{C} \stackrel{\rightharpoonup}{F} \cdot d \vec{r}=\oint_{C_{1}} \vec{F} \cdot d \vec{r}-\oint_{C_{2}} \vec{F} \cdot d \vec{r} \\
& \Rightarrow \quad \oint_{C_{1}} \vec{F} \cdot d \vec{r}=\oint_{C_{2}} \vec{F} \cdot d \vec{r}
\end{aligned}
$$

Compare this with Goren's. Thu on plane region with one hole:

$$
\Rightarrow \quad \oint_{C_{1}} \vec{F} \cdot d \vec{r}=\oint_{C_{2}} \vec{F} \cdot d \vec{r} \quad \quad(\text { check! })
$$

auti-clockwisely wit "plane" (not the region as a surface).

Proof of Thu 10 (3-din'l care)

Only the " \Leftarrow " part remains to be proved:
By assumption $\vec{F}=M \hat{i}+N \hat{j}+L \hat{k}$ satisfies the system of eats in the cor. to the Thu 9, that is

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}, \quad \frac{\partial N}{\partial z}=\frac{\partial L}{\partial y} \text {, and } \frac{\partial L}{\partial x}=\frac{\partial M}{\partial z} .
$$

Hence $\vec{\nabla} \times \vec{F}=\overrightarrow{0}$
Let C be a simple closed cone is a siumply-comected region D
Then C can be defamed to a point inside D
The process of defamation gives an oriented sinface $S \subset D$ sack that the boundary of $S=C$.

By Stoke's Thm,

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma=0 \quad(\text { sivce } \vec{\nabla} \times \vec{F}=\overrightarrow{0})
$$

Then Thm $\mathcal{Y} \Rightarrow \vec{F} \overline{0}$ conservation.

Summary

Normal farm of Green's Thm

$$
n=3
$$

Stokes' Thm

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma
$$

Divergence Thm (next topic)

$$
\iint_{S} \vec{F} \cdot \hat{\eta} d \sigma=\iiint_{D} \vec{\nabla} \cdot \vec{F} d V
$$

"flux": by defurction, \hat{n} is the "outwand" unit namal of the caure "C" in the "plane".

Ihm 13 (Divergence Theorem)
Let \vec{F} be a C^{\prime} vecta field on $\Omega^{\text {open }} \subseteq \mathbb{R}^{3}$ (no boundary) S be a piecemse smooth oriented closed smface enclosing a (solid) region $D \subseteq \Omega$.
Let \hat{n} be the outward pouting unit normal vecta field on S,
Then

$$
\iint_{S} \vec{F} \cdot \hat{h} d \sigma=\iiint_{D} d i v \vec{F} d v=\iiint_{D} \vec{\nabla} \cdot \vec{F} d v
$$

eg 64 Verify Divergence Thu for

$$
\begin{aligned}
& \vec{F}=x \hat{i}+y \hat{j}+z \hat{k} \\
& N=\left\{x^{2}+y^{2}+z^{2}=a^{2}\right\}(a>0)
\end{aligned}
$$

(surface $=S_{a}^{2} 2$-din'l sphere of radices a centered at $(0,0,0)$)
$D=$ solid ball bounded by S.
Sole: At $(x, y, z) \in S$

$$
\begin{aligned}
\hat{n} & =\frac{x \hat{i}+y \hat{j}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{1}{a}(x \hat{i}+y \hat{j}+z \hat{k}) \quad \begin{array}{l}
\text { is the outward } \\
\text { pointing unit normal }
\end{array} \\
\iint_{S} \vec{F} \cdot \hat{n} d \sigma & =\iint_{S}(x \hat{i}+y \hat{j}+z \hat{k}) \cdot \frac{1}{a}(x \hat{i}+y \hat{j}+z \hat{k}) d \sigma=a \iint_{S} d \sigma
\end{aligned}
$$

$=4 \pi a^{3} \quad$ (Check!)

On the other hand.

$$
\begin{aligned}
\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F} & =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot(x \hat{i}+y \hat{j}+z \hat{k}) \\
& =\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3 \\
\Rightarrow \iiint_{D} \operatorname{div} \vec{F} d V & =3 \iiint_{D} d V=3 \cdot \frac{4 \pi a^{3}}{3}=4 \pi a^{3} \\
& =\iint_{S} \vec{F} \cdot \hat{n} d \sigma
\end{aligned}
$$

eg 65 $\vec{F}=x \sin y \hat{i}+(\cos y+z) \hat{j}+z^{2} \hat{k}$
Compute outward flux of \vec{F} across the boundary ∂T of

$$
T=\left\{(x, y, z) \in \mathbb{R}^{3}=\begin{array}{l}
x+y+z \leqslant 1 \\
x, y, z \geqslant 0
\end{array}\right\}
$$

(tetrahadron)
Soon: $\quad \operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}=\frac{\partial}{\partial x}(x \sin y)+\frac{\partial}{\partial y}(\cos y+z)+\frac{\partial}{\partial z}\left(z^{2}\right)$

$$
=2 z \quad \text { (check!) }
$$

Divergence Th $m \Rightarrow$

$$
\iint_{\partial T} \vec{F} \cdot \hat{n} d \sigma=\iiint_{T} d i r \vec{F} d V=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} 2 z d z d y d x=\frac{1}{12} \quad \text { (check!) }
$$

egb6 = Let S_{1}, S_{2} be 2 surfaces with common boundary cave C such that $S_{1} \cup S_{2}$ fame a closed surface enclosing a solid region D (without hole)

Suppre \hat{n} is the outward unit nounal of the (boundary of) solid region D.
Then the orientation of C with
 respect to $\left(S_{1}, \hat{n}\right)$ and $\left(S_{2}, \hat{n}\right)$ are opposite (since " \hat{b} " of $S_{1} \& S_{2}$ are opposite) Find $\quad \iiint_{D} \operatorname{div}(\vec{\nabla} \times \vec{F}) d V$, where \vec{F} is a C^{2} vecta field on D.

Sol

$$
\begin{aligned}
\iint_{S_{1}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma & =\oint_{C} \vec{F} \cdot d \vec{r} \\
& =-\oint_{C} \stackrel{\rightharpoonup}{F} \cdot d \vec{r} \\
& =-\int_{S_{2}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma
\end{aligned} \text { (tue rented wort }\left(S_{1}, \hat{n}\right) \text {) }
$$

$\Rightarrow \quad \iint_{S_{1} \cup S_{2}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma=0 \quad$ (see eg $6 \mid(c)$ for explicit example)
Divergence The $\Rightarrow \iiint_{D} \operatorname{div}(\vec{\nabla} \times \vec{F}) d V=\iint_{S_{1} \cup S_{2}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma=0$

Remark The result holds for any C^{2} vecta field \vec{F} defied on any D. It is consistent wish

$$
(E \times!) \quad \vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})=0 \quad \forall C^{2} \text { recta fred }
$$

i.e. $\operatorname{div}(\operatorname{curl} \vec{F})=0$

Compare:

$$
\operatorname{curl}(\operatorname{grad} f)=\overrightarrow{0} \text { ie. } \vec{\nabla} \times(\vec{\nabla} f)=\overrightarrow{0}
$$

