eg 60
(1)

(2) $S \subset \mathbb{R}^{2}$ with $\hat{n}=\hat{k}$: same as the usual outi-clockwise direction
 of a closed plane curve.
(3) 2 boundary components

(4) 2 boundary components $S \subset \mathbb{R}^{2}$

Important remark: If S is a region in \mathbb{R}^{2}, then a boundary component of $S\left(C_{1} a d_{2} f a\right.$ ustance $)$ has "2" concepts of "oriented auti-clocknisely" with respect to $S=$ regina and \mathbb{R}^{2}. Even S and \mathbb{R}^{2} have the same orientation, ie, $\hat{n}=\hat{k}$, we still have the following situations: $\left(C_{1}, C_{2}\right.$ as in figure above $)$

	$S($ region	\mathbb{R}^{2}
C_{1}^{\prime}	anti-clockwise (t)	couti-clockwise (t)
C_{2}	anti-clockwise (t)	clocknise $(-)$

(5)

what is the oriented of C_{i}
sit. their oriented auti-clockurse with respect to $\hat{n} ?(E x!)$

egbl Verifying Stokes' The
(a) $S_{1}=x^{2}+y^{2}+z^{2}=9, z \geqslant 0$
with upward normal \hat{n} (i.e. \hat{h} (couproment >0)

boundary $C: x^{2}+y^{2}=9, z=0$
And $\vec{F}=y_{i}-x \hat{j}$

Parametrize C by $\vec{\gamma}(t)=(3 \cos t, 3 \sin t, 0), 0 \leqslant t \leqslant 2 \pi$

$$
=3 \cos t \hat{i}+3 \sin t \hat{j}
$$

(has the correct direction, ie. oriented anti-clockmisely wot \hat{n})

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & =\int_{0}^{2 \pi}(3 \sin t \hat{i}-3 \cos t \hat{j}) \cdot(-3 \sin t \hat{i}+3 \cos t \hat{j}) d t \\
& =-18 \pi \quad \text { (check!) }
\end{aligned}
$$

For the smface integral:

$$
\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & -x & 0
\end{array}\right|=-2 \hat{k} \quad \text { (Check!) }
$$

Since S, is a hemisphere (upper) centered at origin of radius 3

$$
\hat{n}=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{1}{3}(x \hat{i}+y \hat{j}+z \hat{k}) \quad\left(\begin{array}{c}
z \geq 0 \\
\mathbb{i} \\
\text { upward }
\end{array}\right)
$$

The smeface S, can be regarded as a bevel sonface given by

$$
\begin{aligned}
& g(x, y, z)=x^{2}+y^{2}+z^{2}=9 \\
\Rightarrow & \vec{\nabla} g=(2 x, 2 y, 2 z)
\end{aligned}
$$

Since $z>0$ (except the boundary) on $S_{1}, \frac{\partial g}{\partial z}=2 z \neq 0$
Hence $d \sigma=\frac{|\vec{\nabla} g|}{\left|\frac{\partial g}{\partial z}\right|} d x d y=\frac{\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}}{|2 z|} d x d y=\frac{3}{z} d x d y$
Therefore $\iint_{S_{1}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma$

$$
\begin{aligned}
& =\iint_{\left\{x^{2}+y^{2} \leqslant 9\right\}}(-2 \hat{k}) \cdot \frac{1}{3}(x \hat{i}+y \hat{j}+z \hat{k}) \frac{3}{z} d x d y \\
& =\iint_{\left\{x^{2}+y^{2} \leqslant 9\right\}}(-2) d x d y=-18 \pi \quad \text { (check!) }
\end{aligned}
$$

(b) (Same C \& same \vec{F}, but new surface)

$$
\begin{aligned}
& S_{2}=x^{2}+y^{2}<9, \quad z=0 \\
& \begin{aligned}
\iint_{S_{2}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma & =\iint_{\left\{x^{2}+y^{2}<9\right\}}(-2 \hat{k}) \cdot \hat{k} d x d y \\
& =-2 \text { Area }\left(\left\{x^{2}+y^{2}<9\right\}\right)=-18 \pi
\end{aligned}
\end{aligned}
$$

(c) Same $\vec{F}=y \hat{i}-x \hat{j}$

$$
S_{3}=S_{1} \cup S_{2}
$$

S_{3} has no boundary and

in fact eniloses a solid region.
Suppre $\hat{n}=$ outward namal of the solid.

$$
\begin{aligned}
& \iint_{S_{3}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma= \int_{S_{1}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma+\int_{S_{2}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma \\
&(\text { sameas eg }(a)) \quad(\text { oppraite to eg (b)) } \\
&= \int_{S_{1}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma+\int_{S_{2}}(\vec{\nabla} \times \vec{F}) \cdot(-\hat{k}) d \sigma \\
&=-18 \pi-(-18 \pi)=0 \\
&\left(=\oint_{C} \vec{F} \cdot d \vec{r}-\oint_{C} \vec{F} \cdot d \vec{r}=0\right)
\end{aligned}
$$

eggr Let $\vec{F}=y_{i} \hat{-}-x \hat{j}$ (same \vec{F} as in egbl, newo sufface \& new bocudary cmuc)

$$
S_{4}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leqslant 9, x+y+z=0\right\}
$$

boundary cove of $S_{4}: C_{4}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=9, x+y+z=0\right\}$
Find $\oint_{C_{4}} \vec{F} \cdot d \vec{r}$ (with direction of C_{4} given as in the figure.)
Sole: Apply Stokes' The

$$
\begin{aligned}
\oint_{C_{4}} \vec{F} \cdot d \vec{r} & =\iint_{S_{4}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma \quad \begin{array}{l}
\hat{n} \text { is the normal to } S_{4} \\
\text { is given by the coefficients } \\
\text { of the equation of the }
\end{array} \\
& \left.=\iint_{S_{4}}(-2 \hat{k}) \cdot \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}} d \sigma \quad \begin{array}{l}
\text { plane } \\
\text { ice. } \hat{n}=\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}} \text { upward }
\end{array}\right] \\
& =-\frac{2}{\sqrt{3}} \iint_{S_{4}} d \sigma=-\frac{2}{\sqrt{3}} \operatorname{Area}\left(S_{4}\right) \\
& =-\frac{2}{\sqrt{3}}\left(\pi \cdot 3^{2}\right)=-\frac{18 \pi}{\sqrt{3}}
\end{aligned}
$$

Proof of Stokes' The
Special case: S is a graph given by
$z=f(x, y) \quad$ over a region R with upward normal upward

Assume C is the boundary of S, and C^{\prime} is the boundary of R (auti-clockuisely oriented writ the hamal of S and the plane respectively)

Parametrize the graph as

$$
\vec{r}(x, y)=x \hat{i}+y \hat{j}+f(x, y) \hat{k}, \quad(x, y) \in R
$$

Then as before $\left\{\begin{array}{l}\vec{r}_{x}=\hat{i}+f_{x} \hat{k} \\ \vec{r}_{y}=\hat{j}+f_{y} \hat{k}\end{array}\right.$

$$
\vec{r}_{x} \times \vec{r}_{y}=-f_{x} \hat{i}-f_{y} \hat{j}+\hat{k}+v \Rightarrow \text { upward }
$$

Hence $\hat{n}=\frac{\vec{r}_{x} \times \vec{r}_{y}}{\left\|\vec{r}_{x} \times \vec{r}_{y}\right\|}$ is the upward (zit) namal of S, and $d \sigma=\left\|\vec{r}_{x} \times \vec{r}_{y}\right\| d x d y=\left\|\vec{r}_{x} \times \vec{r}_{y}\right\| d A$ of R.

Let $\vec{F}=M \hat{i}+N \hat{j}+L \hat{k}$ the C^{\prime} vecta field.
Then $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d \sigma=\iint_{R}(\vec{\nabla} \times \vec{F})(\vec{r}(x, y)) \cdot \frac{\vec{r}_{x} \times \vec{r}_{y}}{\left\|\vec{r}_{x} \times \vec{r}_{y}\right\|}\left\|\vec{r}_{x} \times \vec{F}_{y}\right\| d A$

$$
\begin{aligned}
& =\int_{R}\left[\left(L_{y}-N_{z}\right) \hat{i}+\left(M_{z}-L_{x}\right) \hat{j}+\left(N_{x}-M_{y}\right) \hat{k}\right] \cdot\left(-f_{x} \hat{i}-f_{y} \hat{j}+\hat{k}\right) d A \\
& =\iint_{R}\left[-f_{x}\left(L_{y}-N_{z}\right)-f_{y}\left(M_{z}-L_{x}\right)+\left(N_{x}-M_{y}\right)\right] d A
\end{aligned}
$$

For the lime ūtegral

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & =\oint_{C} M d x+N d y+L d z \\
& =\oint_{C^{\prime}} M d x+N d y+L d f \quad(z=f(x, y)) \\
& =\oint_{C^{\prime}} M d x+N d y+L\left(f_{x} d x+f_{y} d y\right) \\
& =\oint_{C^{\prime}}\left(M+f_{x} L\right) d x+\left(N+f_{y} L\right) d y
\end{aligned}
$$

Precisely: If c^{\prime} is parametrized by $\vec{\gamma}(t)=(x(t), y(t))$ fa $a \leqslant t \leqslant b$
Then C is parametrized by

$$
\begin{array}{r}
\vec{r}(t)=(x(t), y(t), f(x(t), y(t))) \quad a \leqslant t \leqslant b \\
\Rightarrow \oint_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b}\left[M(\vec{r}(t)) x^{\prime}(t)+N(\vec{r}(t)) y^{\prime}(t)\right. \\
\left.+L(\vec{r}(t)) \frac{d}{d t} f(x(t), y(t))\right] d t
\end{array}
$$

$$
\begin{aligned}
& =\int_{a}^{b}\left[M x^{\prime}+N y^{\prime}+L\left(f_{x} x^{\prime}+f_{y} y^{\prime}\right)\right] d t \\
& =\int_{a}^{b}\left[\left(M+f_{x} L\right) x^{\prime}+\left(N+f_{y} L\right) y^{\prime}\right] d t \\
& =\oint_{C^{\prime}}\left(M+f_{x} L\right) d x+\left(N+f_{y} L\right) d y
\end{aligned}
$$

Then by Green's Th

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & =\oint_{C^{\prime}}\left(M+f_{x} L\right) d x+\left(N+f_{y} L\right) d y \\
& =\iint_{R}\left[\frac{\partial}{\partial x}\left(N+f_{y} L\right)-\frac{\partial}{\partial y}\left(M+f_{x} L\right)\right] d A \\
& =\iint_{R}\left[\begin{array}{l}
\frac{\partial}{\partial x}\left(N(x, y, f(x, y))+f_{y}(x, y) L(x, y, f(x, y))\right. \\
-\frac{\partial}{\partial y}\left(M(x, y, f(x, y))+f_{x}(x, y) L(x, y, f(x, y))\right] d A \\
\\
\end{array}\right) \iint_{R}\left[-\left(M_{y}+M_{z} f_{y}\right)-\left(f_{x y}, N_{x}\left(N_{z} f_{x}\right)+\left(f_{y}+L_{z} f_{y}\right)\right)\right] \\
& \left.=\iint_{R}\left[-f_{x}\left(L_{x}+L_{y}-N_{z}\right)-f_{y}\left(M_{z}-L_{x}\right)\right)+\left(N_{x}-M_{y}\right)\right] d A \\
& =\iint_{S}(\vec{\nabla} x \vec{F}) \cdot \hat{n} d \sigma
\end{aligned}
$$

Thin proves the case of C^{2} graph.

General case = Divides S into füitely many pieces which are graphs (in certain projection).
This includes S with many boundary components as in the Green's The

add some curve likes this to make it in 1 bay cunponeect.
(Proof of general case omitted)
Note: Stokes' The applies to surfaces like the following

