Implicit Surface (Level surface) Suppose S is given by F(X,Y,z) = C $i_{c}e, \beta = F(c)$ (Note: Fis a function of 3-variables, not vecta field) $\underline{q(5)} = F(X,Y,z) = \chi^2 + y^2 + z^2$ IS F'(0) a surface? Soly: No, since $F'(0) = \{(0,0,0)\}$ not a surface. Remark = IS \$\overline F = \$\overline of a point, then IFT implies that S = F(c) is a "surface" (c = value of F at that point) near that point (in fact, a graph?) $\underline{eg5}$ (antd) $\overline{\nabla}F = 2X\hat{i} + 2Y\hat{i} + 2F\hat{k}$ $\vec{\nabla} F = \vec{0} \iff (x, y, z) = (0, 0, 0)$ Hence if C>O, then H (X, Y, Z) E F (C), we have $\vec{\nabla} F(X,Y,z) \neq \vec{0}$ ⇒ S=F(c) is a surface ∀C>O (What are these surfaces?)

Terminology:
$$S = F(c)$$
 is said to be smooth
if (1) F is C' on S', and
(z) $\overline{\nabla}F \neq \overline{O}$ on S'.

How to compute surface area for a smooth lawel surface

$$S = F^{-1}(c) ?$$
By $\nabla F \neq \vec{0}$, at least one of the partial derivatives F_x, F_y, F_z
is nonzoro. Let assume $F_z = \frac{2F}{2z} \neq 0$ (the other cases are similar)
IFT $\Rightarrow S = F^{-1}(c) = \{F(x,y,z) = C\}$
can be whithen (locally) as a graph
 $z = f(x,y)$ (near a point)
i.e. $F(x,y, f(x,y)) = C$ ($\forall (xy)$ near a point)
i.e. $F(x,y, f(x,y)) = C$ ($\forall (xy)$ near a point)
Then chain rule $\Rightarrow \int_{x_z} f_x = -\frac{F_x}{F_z}$
($F_z \neq 0$)
 $f_y = -\frac{F_y}{F_z}$
Hence Area(S) = $\iint_{x_z} [I + (\overline{r}_x)f] dA$ where $\Omega = domain of the (local) z = f(x,y)$.
 $= \iint_{x_z} [I + \frac{F_x^2}{F_z^4} + \frac{F_z^2}{F_z^4} dxdy$
 $= \iint_{x_z} [\frac{f_x^2 + F_y^2 + F_z^2}{|F_z|} dxdy$

$$\frac{Thm Iz}{F_{z} + 0} = F'(c) \quad \text{is a smooth level surface such that}$$

$$F_{z} + 0, \text{ and can be represented by an implicit}$$
function over a domain S_{z} .
Then $I_{\text{trea}}(S) = \iint_{T_{z}} \frac{I \nabla FI}{IF_{z}I} dA = \iint_{T_{z}} \frac{I \nabla FI}{IF_{z}I} dX dy$

(Smilar fa the cases that Fx = 0 or Fy = 0)

$$\begin{array}{rcl} \underline{cgt54} &: & \mbox{Find sunface area of the paraboloid} \\ & & & \mbox{$x^2+y^2-z=0$} & \mbox{below $z=4$} \\ (\mbox{This is in-fact a graph, but we} \\ & & \mbox{$do t using method of level sunface}) \\ \hline & & \mbox{x} \\ \hline & & \mbox{cot} \\ \hline & & \mbox$$

Def 16 Surface Integral (of a function)
Suppose
$$G = S \rightarrow R$$
 is a continuous function on a surface S' ,
parametrized by $F(u,v)$, $(u,v) \in R$ (region R). Then the
integral of G on S is
 $S = \int G$ for $\frac{def}{def} = \int G(F(u,v)) |F_u \times F_v| dA$
 $s = \int R$
area abavent of S

egts (a surface of revolution of the curve
$$y = corz$$
)
 $\xrightarrow{2}$ $\xrightarrow{3}$ $\xrightarrow{3}$ $\xrightarrow{9}$ $\xrightarrow{9}$ $\xrightarrow{1002}$ $(-\frac{1}{2} \le 7 \le \frac{1}{2})$
Let $G(x, y, 7) = \sqrt{1 - x^2 - y^2}$ be a function on x
 $\xrightarrow{100}$ $\xrightarrow{100}$ Find $\int_{S} G dT$

Sold :
$$S$$
 can be parametrized by

$$\begin{cases}
x = caz cao \theta, \quad \theta \in [-T, T] \\
y = caz and \theta, \quad z \in [-\frac{T}{2}, \frac{T}{2}] \\
z = z, \\
z.e. F(\theta, z) = caz ca \theta, i + caz an \theta, j + z, k \\
(Note: there is an exceptional set of "I-din" so that F is not corresponds to
 $\theta = T - a - T, \quad z = -\frac{T}{2} - a - \frac{T}{2} - \frac{T}{2} - a - \frac{T}{2} - \frac{$$$