Implicit Surface (Level surface)
Suppose S is given by $F(x, y, z)=C$

$$
i_{c} e, \quad s=F^{-1}(c)
$$

(Note: F is a function of 3 -variables, not vecta field)
ef53 $=F(x, y, z)=x^{2}+y^{2}+z^{2}$
Is $F^{-1}(0)$ a surface?
Sols: No, since $F^{-1}(0)=\{(0,0,0)\}$ not a surface.
Remark: If $\vec{\nabla} F \neq \overrightarrow{0}$ at a point, then IF T implies that $S=F^{-1}(c)$ is a "smface" ($C=$ value of F at that point) near that point (in fact, a graph!)
eg 53 (contd) $\vec{\nabla} F=2 x \hat{i}+2 y \hat{j}+2 z \hat{k}$

$$
\vec{\nabla} F=\overrightarrow{0} \Leftrightarrow \quad(x, y, z)=(0,0,0)
$$

Hence if $\left(>0\right.$, then $\forall(x, y, z) \in F^{-1}(c)$, we have

$$
\vec{\nabla} F(x, y, z) \neq \overrightarrow{0}
$$

$\Rightarrow \quad S=F^{-1}(c)$ is a surface $\quad \forall c>0$
(What are these sunfuces?)

Terminobgy: $S=F^{-1}(c)$ is said to be smooth
if $(1) F$ is C^{\prime} on S, and
(z) $\vec{\nabla} F \neq \overrightarrow{0}$ on S.

How to compute surface area for a smooth level surface

$$
S=F^{-1}(c) ?
$$

By $\vec{\nabla} F \neq \overrightarrow{0}$, at least one of the partial derivatives F_{x}, F_{y}, F_{z} is nonzero. Let assume $F_{z}=\frac{\partial F}{\partial z} \neq 0$ (the other cases are similar)

$$
\text { IF T } \Rightarrow S=F^{-1}(c)=\{F(x, y, z)=c\}
$$

can be written (rally) as a graph

$$
z=f(x, y) \quad \text { (near a point) }
$$

i.e. $F(x, y, f(x, y))=C(\forall(x, y)$ near a point $)$

$$
\text { Then chain rule } \Rightarrow\left\{\begin{array}{l}
f_{x}=-\frac{F_{x}}{F_{z}} \\
f_{y}=-\frac{F_{y}}{F_{z}}
\end{array} \quad\left(F_{z} \neq 0\right)\right.
$$

Hence Area $(S)=\iint_{\Omega} \sqrt{1+|\vec{\nabla} f|} d A \quad$ where $\Omega=\begin{gathered}\text { domain of the } \\ \text { (leal) } z=f(x, y)\end{gathered}$ (leal) $z=f(x, y)$.

$$
\begin{aligned}
& =\iint_{\Omega} \sqrt{1+\frac{F_{x}^{2}}{F_{z}^{2}}+\frac{F_{y}^{2}}{F_{z}^{2}}} d x d y \\
& =\iint_{\Omega} \frac{\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}}{\left|F_{z}\right|} d x d y
\end{aligned}
$$

Thmiz If $S=F^{-1}(c)$ is a smooth level smface such that $F_{z} \neq 0$, and can be represented by an implicit function oo a domain Ω.

Then $\quad \operatorname{Area}(S)=\iint_{\Omega} \frac{|\vec{\nabla} F|}{\left|F_{z}\right|} d A=\iint_{\Omega} \frac{|\vec{\nabla} F|}{\left|F_{z}\right|} d x d y$
(Similar fa the cases that $F_{x} \neq 0$ or $F_{y} \neq 0$)
eg 54: Find smface area of the paraboloid

$$
x^{2}+y^{2}-z=0 \text { below } z=4
$$

$\binom{$ This is infact a graph, but we }{ do it using method of lure smface }

Sole: Lat $F(x, y, z)=x^{2}+y^{2}-z$

$$
\text { Far } z=4, \quad x^{2}+y^{2}-z=0 \Rightarrow x^{2}+y^{2}=4
$$

\Rightarrow projected region $\Omega=\left\{(x, y): x^{2}+y^{2} \leqslant 4\right\}$

$$
\begin{aligned}
& \vec{\nabla} F=2 x \hat{i}+2 y \hat{j}-\hat{k} \\
& \therefore \quad F_{z}=-1 \neq 0, \forall(x, y) \in \Omega \\
& \therefore \text { Surface Area }=\iint_{\Omega} \frac{|\vec{\nabla} F|}{\left|F_{z}\right|} d A=\iint_{\Omega} \frac{\sqrt{4 x^{2}+4 y^{2}+1}}{|-1|} d x d y \\
& \text { (Check!) }=\iint_{\left\{x^{2}+y^{2} \leqslant 4\right\}} \sqrt{4 x^{2}+4 y^{2}+1} d x d y=\frac{\pi}{6}\left[(\sqrt{17})^{3}-1\right]
\end{aligned}
$$

Def 16 Surface Integral (of a function)
Supp re $G=S \rightarrow \mathbb{R}$ is a continuous function on a surface S, parametrized by $\vec{P}(u, v),(u, v) \in R \quad($ region $R)$. Then the integral of G on S is

$$
\iint_{S} G d \sigma \frac{d Q f}{=} \iint_{R} G(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
$$

area element of $\$$
element area of the parameter spate $d A=d u d v$

Note: In the causes of graph or level surface, we have
(i) $\iint_{S} G d \sigma=\iint_{(x, y)} G(x, y, f(x, y)) \sqrt{1+|\vec{\nabla} f|^{2}} d x d y$

$$
(f n z=f(x, y))
$$

(ii) $\iint_{S} G d \sigma=\iint_{(x, y)} G(x, y, z) \frac{|\vec{\nabla} F|}{\left|F_{z}\right|} d x d y$

$$
\left(f_{a} F(x, y, z)=c, F_{z} \neq 0\right)
$$

(may be difficult to find there: region a z in tens of (x, y))
eg 56 (a surface of revolution of the convey $y=\cos z$)

$\left(-\frac{\pi}{2} \leqslant z \leqslant \frac{\pi}{2}\right)$
Let $G(x, y, z)=\sqrt{1-x^{2}-y^{2}}$ be a function on S Find $\iint_{S} G d \sigma$.

Soln: S can be parametrized by

$$
\begin{cases}x=\cos z \cos \theta, & \theta \in[-\pi, \pi] \\ y=\cos z \sin \theta, & z \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ z=z, & \end{cases}
$$

ie. $\vec{F}(\theta, z)=\cos z \cos \theta \hat{i}+\cos \sin \theta \hat{j}+z \hat{k}$
(Note: there is an exceptional set of "I-diur" so that \vec{r} is not one-to-me, a not smooth corresponds to

$$
\begin{aligned}
& \theta=\pi a-\pi, z=-\frac{\pi}{2} \text { an } \frac{\pi}{2} \quad \text {) } \\
& \Rightarrow \quad\left\{\begin{array}{l}
\vec{r}_{\theta}=-\cos z \sin \theta \hat{i}+\cos z \cos \hat{j} \quad \\
\vec{r}_{z}=-\sin z \cos \theta \hat{i}-\sin z \cos \theta \hat{j}+\hat{k}
\end{array} \quad \quad\right. \text { (check!) } \\
& \vec{r}_{\theta} \times \vec{r}_{z}=\cos z \cos \hat{i}+\cos z \sin \theta \hat{j}+\sin z \cos z \hat{k} \quad \quad \text { (check!) } \\
& \Rightarrow \quad\left|\vec{r}_{\theta} \times \vec{r}_{z}\right|=\sqrt{\cos ^{2} z\left(1+\sin ^{2}-z\right)}=\cos z \sqrt{1+\sin ^{2} z} \quad \text { (check!) } \\
& \quad\left(\cos z \geq 0 \quad \text { fa } z \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)
\end{aligned}
$$

Than $\iint_{S} G d \sigma=\int_{-\pi}^{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} G(\vec{r}(\theta, z))\left|\vec{r}_{\theta} \times \vec{r}_{z}\right| d z d \theta$

$$
\begin{aligned}
& =\int_{-\pi}^{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\cos ^{2} z} \cos z \sqrt{1+\sin ^{2} z} d z d \theta \\
& =4 \pi \int_{0}^{\frac{\pi}{2}} \sin z \cos z \sqrt{1+\sin ^{2} z} d z \\
& =\cdots=\frac{4 \pi}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

