$\left(\left(m t^{\prime} d\right)\right.$
Sols (a) Recall that $\vec{\nabla} \times \vec{F}=0$
(Note that Green's Thu doesn't apply directly, since C encloses the nigiu $(0,0)$ where \vec{F} is not defined.)
Choose $\varepsilon>0$ small enough suck that the circle C_{ε} of radius ε centered at $(0,0)$ is completely
 enclosed by d.
\vec{F} is smooth in the region R between C and C_{ε}. Hence the general form of Green's The implies

$$
\begin{aligned}
& 0=\iint_{R}(\vec{\nabla} \times \vec{F}) \cdot \hat{k} d A=\oint_{C} \vec{F} \cdot d \vec{r}-\oint_{C_{\varepsilon}} \vec{F} \cdot d \vec{r} \\
& \begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & =\oint_{C_{\varepsilon}} \vec{F} \cdot d \vec{r} \\
& =\oint_{C_{\varepsilon}} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
\end{aligned}
\end{aligned}
$$

Parametrize C_{ε} by $\left\{\begin{array}{l}x=\varepsilon \cos \theta \\ y=\varepsilon \sin \theta,\end{array}, 0 \leqslant \theta \leqslant 2 \pi\right.$

$$
\begin{aligned}
\Rightarrow \oint_{C_{\varepsilon}} \vec{F} \cdot d \vec{r} & =\int_{0}^{2 \pi}\left[\frac{-q \sin \theta}{\xi^{z}}(-q \sin \theta)+\frac{\varepsilon \cos \theta}{\varepsilon^{2}}(\varepsilon \cos \theta)\right] d \theta \\
& =2 \pi
\end{aligned}
$$

$$
\therefore \quad \oint_{C} \vec{F} \cdot d \vec{r}=2 \pi
$$

[Infact, we've proved that $\oint_{C_{R}} \vec{F} \cdot d \vec{r}=2 \pi, \forall$ radius $R>0$, which can be seen by consider the domain between $C_{1} \& C_{R}$

Green's Thun

$$
\Rightarrow \oint_{C_{1}} \vec{F} \cdot d \vec{r}=\oint_{C_{R}} \vec{F} \cdot d \vec{r}
$$

(b)

Decompose the carve into

doesn't eulose $(0,0)$

$$
\begin{gathered}
\oint_{C_{1}} \vec{F} \cdot d \vec{r}=\iint_{R_{1}}(\vec{\nabla} \times \vec{F}) \cdot \hat{k} d A=0 \quad \oint_{C_{2}} \vec{F} \\
\therefore \quad \oint_{C} \vec{F} \cdot d \vec{r}=0+2 \pi=2 \pi
\end{gathered}
$$

encloses (0,0)

$$
\oint_{C_{2}} \vec{F} \cdot d \vec{r}=2 \pi \quad(\text { by part }(a))
$$

Addition example (c)

$\oint \cdots=2 \pi$
$\oint \cdots=2 \pi$
$\oint \cdots=0$
Hence $\oint_{C} \vec{F} \cdot d \vec{r}=2 \pi+2 \pi+0=4 \pi$
(optional ex! : think of some examples with -2π)

Surface Area \& Integral
Def 14 Parametric Surface (Surface with parametrization)
A parametric smface (ir a parametrization of a surface)
in \mathbb{R}^{3} is a mapping of 2 -variables in to \mathbb{R}^{3} :

$$
\vec{r}(u, v)=x(u, v) \hat{i}+y(u, u) \hat{j}+z(u, u) \hat{k}
$$

And it is called smooth if
(1) $\vec{r}^{\text {is }} C^{\prime}$ (ie. $x_{u}, x_{v}, y_{u}, y_{v}, z_{u}, z_{v}$ are continues)
(2) $\vec{r}_{u} \times \vec{r}_{v} \neq \overrightarrow{0} \quad \forall u, v$
where

$$
\begin{aligned}
& \left\{\begin{array}{l}
\vec{r}_{u}=\frac{\partial \vec{r}}{\partial u}=\frac{\partial x}{\partial u} \hat{i}+\frac{\partial y}{\partial u} \hat{j}+\frac{\partial z}{\partial u} \hat{k} \\
\vec{r}_{v}=\frac{\partial \vec{r}}{\partial v}=\frac{\partial x}{\partial v} \hat{i}+\frac{\partial y}{\partial v} \hat{j}+\frac{\partial z}{\partial v} \hat{k}
\end{array}\right. \\
& \binom{\vec{r}_{u}=x_{u} \hat{i}+y_{u} \hat{j}+z_{u} \hat{h}}{\vec{r}_{v}=x_{v} \hat{i}+y_{v} \hat{j}+z_{v} \hat{k}}
\end{aligned}
$$

Note: Condition (z) $\Rightarrow \vec{r}_{u}, \vec{r}_{v}$ are linearly independent $\Rightarrow \operatorname{span}\left\{\vec{\gamma}_{u}, \vec{r}_{v}\right\} \bar{v}^{\prime}$ in fact a 2 -din' ${ }^{\prime} l$ subspace.
\Rightarrow "sinface" cannot be degenerated to a curve or a pant.

eg 51 (Torus)
Consider the circle on the $x z$-plane $(i e . ~ y=0)$
 with radius $a>0$ catered at $(x, z)=(R, 0)$ with $R>a$.

A parametrization is $\left\{\begin{array}{l}x=R+a \cos \alpha \\ z=a \sin \alpha\end{array} \quad \alpha \in[0,2 \pi]\right.$

rotating the circle, we have a Torus

Then the parametrization of this Torces is

$$
\begin{cases}x=(R+a \cos \alpha) \cos \theta & \\ y=(R+a \cos \alpha) \sin \theta, 2 \pi] \\ z=a \sin \alpha & \end{cases}
$$

Ex: Check that it is a smooth smface:
It is clearly C^{\prime}, need to check

$$
\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right) \times\left(x_{\theta}, y_{\theta}, z_{\theta}\right) \neq \overrightarrow{0}
$$

(See next example)

Note: This torus can also be described as

$$
\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=a^{2} \quad(E x!)
$$

Surface Area
Recall: $f a \vec{a}, \vec{b} \in \mathbb{R}^{3}$

$$
|\vec{a} \times \vec{b}|=\operatorname{Area}\left(\frac{\stackrel{\rightharpoonup}{b} \sqrt{\boxed{ }}}{\vec{a}}\right)
$$

Let $\vec{r}(u, v)$ be a parametrization of a sinface S with $(u, v) \in \Omega$ Consider

\Rightarrow "Area" on the surface corresponding to

$$
\begin{aligned}
\text { is approx. } & =\operatorname{Area}\left(\vec{r}_{v} \Delta u / / / / / / \underset{\vec{r}_{u} \Delta u}{ }\right) \\
& =\left|\left(\vec{r}_{u} \Delta u\right) \times\left(\vec{r}_{v} \Delta v\right)\right| \\
& =\left|\vec{r}_{u} \times \vec{r}_{v}\right| \Delta u \Delta v
\end{aligned}
$$

Hence "Area element" of S, denoted by $d \sigma$, is given by

$$
\begin{aligned}
& d \sigma=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v \\
& d \sigma=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
\end{aligned}
$$

area element in the (u, v)-space.

Therefore, we make the following
Def15: Let $S \subset \mathbb{R}^{3}$ be a smooth parametric surface given by

$$
\vec{r}(u, v) \text { for }(u, v) \in \Omega \subset \mathbb{R}^{2} \text {. Then }
$$

$$
\begin{aligned}
\operatorname{Area}(S) \stackrel{\text { def }}{=} & \iint_{\Omega}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A \\
= & \iint_{\Omega}\left|\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right| d A
\end{aligned}
$$

$$
\left(i, e . \operatorname{Area}(S)=\iint_{\Omega} d \sigma\right)
$$

eg 52: Surface area of torus given by $(R>a>0$ are constants)

$$
\begin{cases}x=(R+a \cos \alpha) \cos \theta & \\ y=(R+a \cos \alpha) \sin \theta & \\ z=a \in \sin \alpha & \theta \in[0,2 \pi] \\ z= & \end{cases}
$$

Sold (ie.)

$$
\begin{aligned}
& \vec{r}(\alpha, \theta)=(R+a \cos \alpha) \cos \theta \hat{i}+(R+a \cos \alpha) \sin \theta \hat{j}+a \sin \alpha \hat{k} \\
& \Rightarrow \quad\left\{\begin{aligned}
\vec{r}_{\alpha}= & -a \sin \alpha \cos \theta \hat{i}-a \sin \alpha \sin \theta \hat{j}+a \cos \alpha \hat{k} \\
\vec{r}_{\theta}= & -(R+a \cos \alpha) \sin \theta \hat{i}+(R+a \cos \alpha) \cos \theta \hat{j}
\end{aligned}\right. \\
& \quad \begin{array}{l}
\quad-a(R+a \cos \alpha) \sin \theta \cos \alpha \hat{j} \\
\\
\quad-a(R+a \cos \alpha) \sin \alpha \hat{k}
\end{array} \\
& \begin{array}{l}
\vec{r}_{\alpha}= \\
\Rightarrow
\end{array} \\
& \quad\left|\vec{r}_{\alpha} \times \vec{r}_{\theta}\right|=a(R+a \cos \alpha)>0
\end{aligned} \quad \text { (check!) }
$$

(So, the smface is "smooth")

$$
\begin{aligned}
\text { Area }(\text { Torus }) & =\iint_{\Omega}\left|\vec{r}_{\alpha} \times \vec{r}_{\theta}\right| d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} a(R+a \cos \alpha) d \alpha d \theta \\
& =4 \pi^{2} R a \quad \text { (check!) }
\end{aligned}
$$

Surface area of a graph

$$
z=f(x, y), \quad(x, y) \in \Omega
$$

Choose the following "natural"

parametrization of the graph

$$
\left.\begin{array}{l}
\vec{r}(x, y)=x \hat{i}+y_{j}+f(x, y) \hat{k} \\
\Rightarrow\left\{\begin{array}{l}
\vec{r}_{x}=\hat{i}+f_{x} \hat{k} \\
\vec{r}_{y}=\hat{j}+f_{y} \hat{k}
\end{array}\right. \\
\Rightarrow \vec{r}_{x} \times \vec{r}_{y}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 0 & f_{x} \\
0 & 1 & f_{y}
\end{array}\right|=-f_{x} \hat{i}-f_{y} \hat{j}+\hat{k} \\
\Rightarrow\left|\vec{r}_{x} \times \vec{r}_{y}\right|=\sqrt{f_{x}^{2}+f_{y}^{2}+1}=\sqrt{1+|\vec{\nabla} f|^{2}} \geqslant 1 \quad \text { (non-zero, thence } \\
\text { "smooth" if } f \in C^{\prime}
\end{array}\right) .
$$

Tho II: The surface area of a C^{\prime} graph S given by

$$
z=f(x, y),(x, y) \in \Omega \subset \mathbb{R}^{2}
$$

is

$$
\operatorname{Area}(S)=\iint_{\Omega} \sqrt{\left|+|\vec{\nabla} f|^{2}\right.} d A=\iint_{\Omega} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A
$$

(Similarly fa $x=f(y, z)$ or $y=f(x, z)$)

