In these notation, the Green's tum can be written as

Vector form of Green's Thu
normal fam

$$
\begin{aligned}
& \oint_{C} \vec{F} \cdot \hat{n} d s=\iint_{R} d i v \vec{F} d A \\
& a \oint_{C} \vec{F} \cdot \hat{n} d s=\iint_{R} \vec{\nabla} \cdot \vec{F} d A \\
& \oint_{C} \vec{F} \cdot \hat{T} d s=\iint_{R} c m l \vec{F} \cdot \hat{k} d A \\
& a \oint_{C} \vec{F} \cdot \hat{T} d s=\iint_{R}(\vec{\nabla} \times \vec{F}) \cdot \hat{k} d A
\end{aligned}
$$

tangential from

And Tho 10 can be written as
The 10': Ω simply-connected \& connected, $\vec{F} \in C^{\prime}$.
Then $\vec{F}=$ conservative $\Leftrightarrow \operatorname{curl} \vec{F}=\vec{\nabla} \times \vec{F}=0$
Note: (i) curl $\stackrel{\rightharpoonup}{F}=\vec{\nabla} \times \vec{F}$ defined only in $\mathbb{R}^{3}\left(\supset \mathbb{R}^{2}\right)$
(ii) but $\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}$ can be defined on \mathbb{R}^{n} for any n

In particular, in \mathbb{R}^{3}

Def 12^{\prime} The divergence of $\vec{F}=M_{i}+N \hat{j}+L \hat{k}$ is defined to be

$$
\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot(M \hat{i}+N \hat{j}+L \hat{k})=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial L}{\partial z}
$$

Then one can easily check the following facts: (Ex!)
(i) $\vec{\nabla} \times(\vec{\nabla} f)=0$ (ie. curl $\vec{\nabla} f=0)$
(ii) \vec{F} conservative $\Rightarrow \operatorname{conl} \vec{F}=\vec{\nabla} \times \vec{F}=0$
(iii) $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})=0 \quad$ (ie. $\operatorname{div}(c m l \vec{F})=0)$

Remark: $\vec{\nabla} \cdot(\vec{\nabla} f) \neq 0$ in general, and it is called the

Laplacian of f and is denoted by

$$
\begin{aligned}
\vec{\nabla}^{2} f & =\vec{\nabla} \cdot(\vec{\nabla} f)=\operatorname{div}(\vec{\nabla} f) \\
& =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

[In graduate level, -t will be denoted by $\Delta=\vec{\nabla}^{2}$ a $\left.\Delta=-\vec{\nabla}^{2}\right]$
The "operator" $\vec{\nabla}^{2}$ is called the Laplace operate and the equation $\vec{\nabla}^{2} f=0$ is called the Laplace equation. Solutions
to the Laplace equation are called harmaic functions.

Pf of Th $10 \quad(n=2)$
We only need to show that if Ω is simply-connected (\& connected) and $\vec{\nabla} \times \vec{F}=0$ (i.e. $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$)
then \vec{F} is conservative.
Case $1 C_{1}, C_{2}$ have no intersection (except at the same end points)

Then " Ω is simple connected"
\Rightarrow the region R enclosed by C_{1} \& C_{2} lies completely inside Ω.
Then Green's Tho \Rightarrow

$$
\begin{aligned}
O & =\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A= \pm \oint_{C_{1}-C_{2}}(M d x+N d y) \\
& \Rightarrow \quad \int_{C_{1}}(M d x+N d y)=\int_{C_{2}}(M d x+N d y)
\end{aligned}
$$

Case $2 C_{1} \Delta C_{2}$ intersect
Pick another curve C_{3} with the same starting point
 and end point, and does not intersect C_{1} u C_{2}.
Then Case $1 \Rightarrow \int_{C_{1}} M d x+N d y=\int_{C_{3}} M d x+N d y=\int_{C_{2}} M d x+N d y$
$\therefore \int_{C} \vec{F} \cdot d \vec{r}$ is indep. of path Δ hence \vec{F} is conservative.

In order to apply Green's Thy to more general situations, we need

Thy (Green's Thy (general form))
Suppress that we have a staple closed cove C is \mathbb{R}^{2}

Suppose that $C_{1}, C_{2}, \ldots, C_{n}$ be pairwise disjoint, piecewise smooth, simple closed caves, such that $d_{1}, \cdots ; c_{n}$ are enclosed by C.
(All C, d_{1}, \cdots, C_{n} are anti-clocknise oriented.)
Let R be the region between C and C_{1}, \cdots, C_{n}.
Suppue that $\vec{F}=M \hat{i}+N \hat{j}$ is defined on sone oren set containing R, and is c^{\prime}. Then

$$
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A=\oint_{c} M d x+N d y-\sum_{i=1}^{n} \oint_{C_{i}} M d x+N d y
$$

(This is the tangential fam. The namal fam is similar)

Sketch of Proof
For simplicity, only one C_{1} inside C
We connect C a C_{1} by au "arc" L

and conside the "simple" closed cure (starting from the point p) $C^{*}=C+L-C_{1}-L$

Then the region R enclosed between $C \& C_{2}$ is the region enclosed by C^{*} except the arc L.
Hence $\quad \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A=\iint_{R \backslash L}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A$

$$
\begin{aligned}
& =\oint_{C^{\prime}}(M d x+N d y) \quad(\text { by Green's }) \\
& =\left(\oint_{C}+\int_{L}-\oint_{C_{1}}-\int_{L}\right)(M d x+N d y) \\
& =\oint_{C} M d x+N d y-\oint_{C_{1}} M d x+N d y
\end{aligned}
$$

$\operatorname{eg} f 9=\vec{F}=\frac{-y}{x^{2}+y^{2}} \hat{i}+\frac{x}{x^{2}+y^{2}} \hat{j}$ on $\mathbb{R}^{2} \backslash\{(0,0)\}=\Omega$
weave calculated $\oint_{C_{1}} \vec{F} \cdot d \vec{r}=2 \pi \quad$ for $C_{1}=x^{2}+y^{2}=1$
(anti-clockwise)
How about
(a)
(b)

$\oint_{C} \vec{F} \cdot d \vec{r}=?$

