In these notation, the Green's this can be written as

And Thm 10 can be written as

 $\begin{array}{cccc} \underline{\text{Thm 10}} : & \underline{\Sigma} & \underline{\text{simply-connected}} & \underline{\text{cunnected}}, & \vec{\mathsf{F}} \in C^{1}, \\ & \underline{\text{Then}} & \vec{\mathsf{F}} = \underline{\text{cunsentative}} \Leftrightarrow & \underline{\text{curl}} & \vec{\mathsf{F}} = \vec{\nabla} \times \vec{\mathsf{F}} = 0 \end{array} \end{array} \tag{(check)} \\ & \underline{\text{Note}} : & (\text{i}) & \underline{\text{curl}} & \vec{\mathsf{F}} = \vec{\nabla} \times \vec{\mathsf{F}} & \underline{\text{defined}} & \underline{\text{only}} & \underline{\text{in}} & \underline{\text{R}}^{3} & (\supset \underline{\text{R}}^{2}) \\ & \underline{\text{(if)}} & \underline{\text{but}} & \underline{\text{div}} & \vec{\mathsf{F}} = \vec{\nabla} \cdot \vec{\mathsf{F}} & \underline{\text{can be defined on } } & \underline{\text{R}}^{n} & \underline{\text{fn ony }} \\ & \underline{\text{In pauticular, in } } & \underline{\text{R}}^{5} \end{array}$

$$\frac{Def 12'}{divergence} \text{ of } \vec{F} = M_{i}^{\circ} + N_{j}^{\circ} + L_{k}^{\circ} \text{ is defined to be}$$
$$div = \vec{\nabla} \cdot \vec{F} = (\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}) \cdot (M_{i}^{\circ} + N_{j}^{\circ} + L_{k}^{\circ}) = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial L}{\partial z}$$

Then one can easily cleach the following facts:
$$(Ex!)$$

(i) $\vec{\nabla} \times (\vec{\nabla} f) = 0$ (i.e. $curl \vec{\nabla} f = 0$)
(i) \vec{F} conservative \Rightarrow $curl \vec{F} = \vec{\nabla} \times \vec{F} = 0$
(ii) $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) = 0$ (i.e. $div(curl \vec{F}) = 0$)
Remark: $\vec{\nabla} \cdot (\vec{\nabla} f) \neq 0$ in general, and $\vec{\tau}$ is called the
Laplacian of f and is denoted by
 $\vec{\nabla}^2 f = \vec{\nabla} \cdot (\vec{\nabla} f) = div(\vec{\nabla} f)$
 $= \frac{3f}{3X^2} + \frac{3f}{3y^2} + \frac{3f}{3z^2}$
In graduate level, $\vec{\tau}$ will be denoted by $\Delta = \vec{\nabla}^2$ or $\Delta = -$

The "operator" $\vec{\nabla}^2$ is called the Laplace operator and the equation $\vec{\nabla}^2 f = 0$ is called the Laplace equation. Solutions to the Laplace equation are called <u>framovic functions</u>.

 $\overrightarrow{\nabla}^{2}$

Pf of Thm 10 (n=2)
We only need to show that if J2 is simply-connected (& cannected)
and
$$\nabla x \vec{F} = 0$$
 (i.e. $\frac{2M}{2Y} = \frac{2N}{2X}$)
then \vec{F} is conservative.
Geven 1 C₁, C₂ there no intersection
(except at the same end points)
Then "J2 is simple cannected"
⇒ the region R euclosed by C₁ × C₂ lies (surpletely inside J2.
Then Green's Thm ⇒
 $0 = \iint (\frac{2N}{2X} - \frac{2M}{2Y}) dA = \pm \bigoplus (Mdx + Ndy)$
R
 $C_1 C_2$
⇒ $\int_{C_1} (Mdx + Ndy) = \int_{C_2} (Mdx + Ndy)$
Cance 2 C₁ × C₂ intersect
Pick another curve C₃
with the same starting point
and end point, and does not intersect C₁ on C₂.
Then Gree I ⇒ $\int_{C_1} Mdx + Ndy = \int_{C_2} Mdx + Ndy = \int_{C_2} Mdx + Ndy$

In order to apply Green's Thm to more general situations, we need

Then
$$(\underline{Green's Thm} (\underline{general form}))$$

Suppose that we have a simple closed curve C in \mathbb{R}^2
 $\int \int \frac{1}{\sqrt{2}} \frac{1$

Sketch of Proof For simplicity, only one C, inside C L-We connect C & C, by an "arc" L

and conside the "Simple" closed curve
(starting from the point p)
$$C^{\pm} = C^{\pm} + L - C_{1} - L$$

Then the region R enclosed between $C = C_{2}$ is the region
enclosed by $C^{\pm} = exept$ the arc L .
Hence $\iint (\frac{\partial N}{\partial X} - \frac{\partial M}{\partial 5}) dA = \iint (\frac{\partial N}{\partial X} - \frac{\partial M}{\partial 5}) dA$
 $R = \oint (Mdx + Ndy)$ (by Green's)
 $= (\oint_{C} + \int_{C} - \oint_{C_{1}} - \int_{L}) (Mdx + Ndy)$
 $= \oint_{C} Mdx + Ndy - \oint_{C_{1}} Mdx + Ndy$
 $eq 4P = F = -\frac{y}{X^{2}y^{2}} + \frac{x}{X^{2}y^{2}} = 0$ $R^{2} + 10,015 = \Omega$
we've calculated $\oint_{C_{1}} F \cdot dF = 2\pi$ for $C_{1} = X^{2}y^{2} = 1$
(anti-clockwise)
How about
(a) $f = C$