eg48 Verify both forms of Green's Thm fa $\vec{F}(X,Y) = (X-Y)\hat{i} + X\hat{j}$ on $\mathcal{N} = [R^2, \hat{u}] C^{(\omega)}$. C = unit circle = F(t) = (st i + sint], telo, 21]Then R = region enclosed by $C = \{x^2 + y^2 < 1\}$ the unit disc. (We also write C = 2R boundary of R) M = X - Y = N = xSom $\frac{\partial M}{\partial x} = 1$, $\frac{\partial M}{\partial y} = -1$; $\frac{\partial N}{\partial x} = 1$, $\frac{\partial N}{\partial y} = 0$ On C, X=cost, y=sunt, telo,211] $L.H.S. = \oint Mdy - Ndx$ Normal from = $\int_{a}^{2h} (cost - sint) dsint - cost dcost$ $= \int_{-\infty}^{2\pi} \cos^2 t \, dt = \pi \qquad (check!)$ $R.H.S. = \iint_{R} \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) dxdy = \iint_{R} (1+0) dxdy = \iint_{R} dxdy = \Pi$ Taugential form L.H.S. = & Mdx+Ndy = ... = ZTT (check!) $R, H, S = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy = \iint_{R} \left(1 - (-1) \right) dxdy = 2\pi$ Note: This example shows that even the Z fams are) equivalent, the values involved may differ.

Pf of Green's Thm (taugential form) Recall: A region R is of special type: type (1): If R = {(x,y): a < x < b, g,(x) < y < g_2(x) } for some cartinuous functions g,(x) & g_2(x) , type (z): If R = {(x,y): h_1(y) < x < h_2(y), c < y < d } for some cartinuous functions h_1(x) & h_2(x), Now: If R is both type (1) and type (2), it said to be simple.

Pf of Green's Thin for Subple Region
By definition, R is of type (1) and
Can be written as

$$R = \{(X,y): a \le X \le b, g_1(X) \le y \le g_2(X)\}$$

let denote the components of the boundary
of R by C₁, C₂, C₃ and C₄ as
in the figure (Note : C₂ and/a C₄
(rould just be a point)
Then $\partial R = C_1 + C_2 + C_3 + C_4$ as oriented curve.
(rung "+" instead of "U" to denote the orientation)

Now
$$C_1 := \frac{1}{2} = g_1(x) \int can be parametrized by
(x,y) := $\vec{F}(t) = (t, g_1(t))$, $a \le t \le b$ (unlike correct orientation)
 $\therefore \int_{C_1} M dx = \int_a^b M(t, g_1(t)) dt$
Similarly "-Cs" can be parametrized by
 $\vec{r}(t) = (t, g_2(t))$, $a \le t \le b$ (unlike correct orientation)
 $\therefore \int_{C_1} M dx = \int_a^b M(t, g_2(t)) dt$
For $C_2 := \{X = b, g_1(b) \le y \le g_2(b)\}$, it can be parametrized by
 $\vec{r}(t) = (b, t)$, $g_1(b) \le t \le g_2(b)$ (unlike correct orientation)
 $\therefore \int_{C_2} M dx = 0$ (since $\frac{dx}{dt} = 0$)
Similarly $\int_{C_4} M dx = -\int_{-C_4} M dx = 0$.
Hence $\oint_{R} M dx = \frac{1}{a \le 1} \int_{C_1} M dx$
 $= \int_a^b [M(t, g_1(t)) - M(t, g_2(t))] dt$
 $(= \int_a^b [M(x, g_1(x)) - M(x, g_2(x))] dx)$)$$

On the other flaud, Fubini's Thm
$$\Rightarrow$$

$$\iint_{R} - \frac{\partial M}{\partial y} dA = \int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{1}(x)} - \frac{\partial M}{\partial y} dy \right) dx$$

$$= \int_{a}^{b} \left[M(x, g_{1}(x)) - M(x, g_{2}(x)) \right] dx$$

$$= \oint_{R} M dx$$
Similar, R is also type (2), $x = f_{1}(y) - f_{1}(y) \le x \le f_{2}(y), c \le y \le d$

$$= \int_{c}^{d} N(f_{1}(t), t) dt + 0 + \int_{c}^{d} N(f_{2}(t), t) dt + 0$$

$$= \int_{c}^{d} \left[N(f_{2}(t), t) - N(f_{1}(t), t) \right] dt$$

$$= \int_{c}^{d} \left[N(f_{2}(t), t) - N(f_{1}(t), t) \right] dt$$

$$= \int_{c}^{d} \left[\int_{g_{1}(y)}^{g_{2}(y)} \frac{\partial N}{\partial x} dx \right] dy$$

$$= \int_{R}^{d} \left[\int_{g_{2}(y)}^{g_{2}(y)} \frac{\partial N}{\partial x} dx \right] dy$$

Proof of Green's Thin for R = finite runion of sample regions with intersections only along some boundary line segments, and those line segments touch only at the end points at most.

By assumption R = URi finite union s.t. • R_i are simple, and • $R_i \cap R_j = line$ segment of a common boundary portion denoted by L_{ij} $(i \neq j)$ Then $\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dA = \sum_{i} \iint_{R_i} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dA$ R $= \sum_{i} \iint_{R_i} Mdx + Ndy$ $\begin{pmatrix}by Green's Thru$ $for simple region
\end{pmatrix}$ Denote $C_i = \text{the part of } \partial R_i$ with no intersection with any other R_j (except at the end points)

Then
$$\partial R_i = (i + \sum_{j \in i} L_i)$$

 $(j \neq i)$
Where L_{ij} is oriented according to the auti-clockwise
orientation of ∂R_i

$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA = \sum_{i} \oint_{\substack{i \in I \\ j \in I}} Mdx + Ndy$$
$$= \sum_{i} \int_{\substack{i \in I \\ i \in I}} Mdx + Ndy + \sum_{i} \sum_{\substack{j \in I \\ i \in I}} \int_{\substack{i \in I \\ i \in I}} Mdx + Ndy$$

Note that, as C_i is not a common bondary of any other R_j , $\sum_{i} C_i = \partial R$ $\therefore \sum_{i} \sum_{j} Mdx + Ndy = \bigoplus_{j} Mdx + Ndy$ Finally, we have $L_{ji} = -L_{ij}$ $as Ri = R_j$ are located on the $R_j = \frac{L_{ji}}{R_i}$ two different sides of the

$$\begin{array}{l} \text{Compart boundary} \\ \overline{z} & \sum_{j} \int Mdx + Ndy = \sum_{\substack{i,j \\ (j \neq i) \ \text{Lij}}} \int Mdx + Ndy = \sum_{\substack{i,j \\ (i \neq j) \ \text{Lij}}} \int Mdx + Ndy \\ &= \sum_{\substack{i \leq j \\ i \leq j \ \text{Lij}}} \int Mdx + Ndy + \sum_{\substack{i \leq j \\ i \leq j \ \text{Ijj}}} \int Mdx + Ndy \\ &= \sum_{\substack{i \leq j \\ i \leq j \ \text{Ijj}}} \left(\int Mdx + Ndy + \int Mdx + Ndy \right) \\ &= \sum_{\substack{i \leq j \\ i \leq j \ \text{Ijj}}} \left(\int Mdx + Ndy - \int Mdx + Ndy \right) \\ &= \sum_{\substack{i \leq j \\ i \leq j \ \text{Ijj}}} \left(\int Mdx + Ndy - \int Mdx + Ndy \right) \\ &= 0 \end{array}$$

This 2nd case basically include almost all situations in the level of Advanced Calculus.

The proof of general case needs "analysis" and will be onvitted here.

$$\frac{\text{Def}_{12}: \text{ The divergence of } \vec{F} = M\hat{i} + N\hat{j} \text{ is defined to be}}{\text{div} \vec{F}} = \frac{\partial M}{\partial \chi} + \frac{\partial N}{\partial y}}$$

$$\frac{\text{Note}: \text{div} \vec{F}}{\text{div} \vec{F}} = \frac{\text{lin}}{\epsilon \Rightarrow 0} \frac{1}{\text{Area}(\overline{D}_{\epsilon}(\chi, y))} \int \int (\frac{\partial M}{\partial \chi} + \frac{\partial N}{\partial y}) dA}{\overline{D}_{\epsilon}(\chi, y)}$$

$$= \frac{\text{lin}}{\epsilon \Rightarrow 0} \frac{1}{\text{Area}(\overline{D}_{\epsilon}(\chi, y))} \oint \vec{F} \cdot \hat{n} dS}{\frac{\partial \overline{D}_{\epsilon}(\chi, y)}{\frac{\partial \overline{D}_{\epsilon}$$

Notation = For
$$f(x,y)$$
, $\nabla f = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{j}$ (gradient)
= $(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y})f$

It is convenient to denote $\vec{\nabla} = \left(\hat{i}\frac{\partial}{\partial \chi} + \hat{j}\frac{\partial}{\partial y}\right)$

Then
$$\vec{\nabla} \cdot \vec{F} = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y}\right) \cdot \left(M\hat{i} + N\hat{j}\right)$$

$$= \frac{\partial M}{\partial x} + \frac{\partial M}{\partial y} = d\hat{i}\hat{v}\cdot\hat{F}$$

Hence we also write

$$div\vec{F} = \vec{\nabla} \cdot \vec{F}$$