eg 48 Verify both forms of Green's Thu fa

$$
\begin{aligned}
& \vec{F}(x, y)=(x-y) \hat{i}+x \hat{j} \text { on } \Omega=\mathbb{R}^{2} \text {, is } C^{\infty} . \\
& C=\text { unit circle }=\vec{F}(t)=\cos t \hat{i}+\sin t \hat{j}, t \in[0,2 \pi]
\end{aligned}
$$

Then $R=$ region enclosed by $C=\left\{x^{2}+y^{2}<1\right\}$ the unit disc.
(We abs write $C=\partial R$ boundary of R)
Son $M=x-y \& \quad N=x$

$$
\frac{\partial M}{\partial x}=1, \quad \frac{\partial M}{\partial y}=-1 \quad ; \quad \frac{\partial N}{\partial x}=1, \quad \frac{\partial N}{\partial y}=0
$$

On C, $x=\cos t, y=\sin t, t \in[0,2 \pi]$
Normal fum

$$
\begin{align*}
\text { L.H.S. } & =\oint_{C} M d y-N d x \\
& =\int_{0}^{2 \pi}(\cos t-\sin t) d \sin t-\cos t d \cos t \\
& =\int_{0}^{2 \pi} \cos ^{2} t d t=\pi \quad(\text { check }!) \tag{check!}
\end{align*}
$$

$$
\text { R.H.S. }=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y=\iint_{R}(1+0) d x d y=\iint_{R} d x d y=\pi
$$

Tangential form L.H.S. $=\oint_{c} M d x+N d y=\cdots=2 \pi \quad$ (check!)

$$
R_{1} H_{S} S_{.}=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\iint_{R}(1-(-1)) d x d y=2 \pi
$$

$\binom{$ Note: This example shows that even the 2 farms are }{ equivalent, the values involved may differ. }

If of Green's Thun (tangential form)
Recall: A region R is of special type:
$\operatorname{type}(1)=$ If $R=\left\{(x, y)=a \leqslant x \leqslant b, g_{1}(x) \leqslant y \leqslant g_{2}(x)\right\}$
for some continuous functions $g_{1}(x) \& g_{2}(x)$.
type (2): If $R=\left\{(x, y)=h_{1}(y) \leqslant x \leqslant h_{2}(y), c \leqslant y \leqslant d\right\}$ fer some continuous functions $h_{1}(x) \& h_{2}(x)$.

Now: If R is both type (1) and type (2), it said to be simple.
eg 49: (i)
 rectangle is simple
(ii)

(iii)

$$
\forall a \in \mathbb{R}: \quad \#\{\partial R \cap\{x=a\}\} \leqslant 2 \quad\left\{\Rightarrow \text { simple } \quad \begin{array}{rl}
& \#\{\partial R \cap\{y=a\}\} \leqslant 2
\end{array} \quad\binom{\text { provided } \partial R \text { is }}{\text { piecewise smooth }}\right.
$$

(Proof: Omitted)

Pf of Green's Thu fer Siple Region
By definition, R is of type (1) and can be written as

Let denote the components of the boundary of R by C_{1}, C_{2}, C_{3} and C_{4} as in the figure (Note: C_{2} aud/a C_{4} could just be a point)

Then $\partial R=C_{1}+C_{2}+C_{3}+C_{4}$ as oriented curve (using "+ "instead of "U" to denote the orientation)

Now $C_{1}:\left\{y=g_{1}(x)\right\}$ can be parametrized by
$(x, y)=\vec{r}(t)=\left(t, g_{1}(t)\right), a \leqslant t \leqslant b$ (with correct orientation)

$$
\therefore \int_{C_{1}} M d x=\int_{a}^{b} M\left(t, g_{1}(t)\right) d t
$$

Similarly " $-C_{3}$ " can be parametrized by

$$
\vec{r}(t)=\left(t, g_{2}(t)\right), \quad a \leqslant t \leqslant b \text { (with correct orientation) }
$$

$$
\therefore \quad \int_{-C_{3}} M d x=\int_{a}^{b} M\left(t, g_{2}(t)\right) d t
$$

For $C_{2}=\left\{x=b, g_{1}(b) \leqslant y \leqslant g_{2}(b)\right\}$, it call be pananeetrized by $\vec{r}(t)=(b, t), \quad g_{1}(b) \leqslant t \leqslant g_{2}(b)$ (with correct mentation)

$$
\therefore \quad \int_{C_{2}} M d x=0 \quad\left(\text { since } \frac{d x}{d t}=0\right)
$$

Similarly $\int_{C_{4}} M d x=-\int_{-C_{4}} M d x=0$
Hence $\oint_{\partial R} M d x=\sum_{i=1}^{4} \oint_{C_{i}} M d x$

$$
\begin{aligned}
& =\int_{a}^{b}\left[M\left(t, g_{1}(t)\right)-M\left(t, g_{2}(t)\right)\right] d t \\
& \left.=\int_{a}^{b}\left[M\left(x, g_{1}(x)\right)-M\left(x, g_{2}(x)\right)\right] d x\right)
\end{aligned}
$$

On the other hand, Fubin''s Thm \Rightarrow

$$
\begin{aligned}
\iint_{R}-\frac{\partial M}{\partial y} d A & =\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)}-\frac{\partial M}{\partial y} d y\right) d x \\
& =\int_{a}^{b}\left[M\left(x, g_{1}(x)\right)-M\left(x, g_{2}(x)\right)\right] d x \\
& =\oint_{\partial R} M d x
\end{aligned}
$$

Similar, R is also type (2),

$$
\begin{aligned}
\oint_{\partial R} N d y & =-\int_{C}^{d} N\left(h_{1}(t), t\right) d t+0+\int_{C}^{d} N\left(h_{2}(t), t\right) d t+0 \\
& =\int_{c}^{d}\left[N\left(h_{2}(t), t\right)-N\left(h_{1}(t), t\right)\right] d t \\
& =\int_{C}^{d}\left[\int_{h_{1}(y)}^{h_{2}(y)} \frac{\partial N}{\partial x} d x\right] d y \\
& =\iint_{R} \frac{\partial N}{\partial x} d A
\end{aligned}
$$

All together

$$
\oint_{\partial R}(M d x+N d y)=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

Proof of Green's Thu fa
$R=$ finite union of simple regions with intersections only along some boundary hive segments, and those line segments touch only at the and parits at most.
eg:

$$
\begin{aligned}
& \left.\begin{array}{l}
R_{1}, R_{2} \text { are sünple } \\
\text { but } R=R_{1} \cup R_{2} \neq \text { simple }
\end{array}\right] \\
& \partial R_{1}=C_{1}+L_{12} \\
& \partial R_{2}=C_{2}-L_{12} \\
& \text { with auti-clockuise mentation } \\
& \text { and } \partial R=C_{1}+C_{2}
\end{aligned}
$$

By assumption $R=U R_{i}$ füite union sit.

- Ri are simple, and
- $R_{i} \cap R_{j}=$ line segment of a comm broudary potion denoted by
$L_{i j}(i \neq j)$
Then

$$
\begin{aligned}
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A & =\sum_{i} \iint_{R_{i}}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\sum_{i} \oint_{\partial R_{i}} M d x+N d y \quad\binom{\text { by Green's Chm }}{\text { fa simple region }}
\end{aligned}
$$

Renote $C_{i}=$ the part of ∂R_{i} with no intersection with any other R_{j} (except at the end points)

Then $\partial R_{i}=C_{i}+\sum_{\substack{j \\(j \neq i)}} L_{i j}$
where $L_{i j}$ is oriented according to the auti-clockwire orientation of ∂R_{i}

Hence

$$
\begin{aligned}
& \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A=\sum_{i} \oint_{\substack{C_{i}+\sum_{j} L_{i j} \\
(j \neq i)}} M d x+N d y \\
&=\sum_{i} \int_{C_{i}} M d x+N d y+\sum_{i} \sum_{\substack{j \\
(j \neq i)}} \int_{L_{i j}} M d x+N d y
\end{aligned}
$$

Note that, as C_{i} is not a common boundary of any other R_{j},

$$
\begin{aligned}
\sum_{i} C_{i} & =\partial R \\
\therefore \sum_{i} \int_{C_{i}} M d x+N d y & =\oint_{\partial R} M d x+N d y
\end{aligned}
$$

Finally, we have $L_{j i}=-L_{i j}$
as $R_{i} \& R_{j}$ are located on the two different sides of the

common boundary.

$$
\begin{aligned}
& \sum_{i} \sum_{\substack{j \\
(j \neq i)}} \int_{L_{i j}} M d x+N d y=\sum_{i, j} \int_{(i \neq j)} M d x+N d y \\
&=\sum_{i<j} \int_{L_{i j}} M d x+N d y+\sum_{\substack{j<i \\
i<j}} \int_{L_{i j}} M d x+N d y \\
&=\sum_{i<j}\left(\int_{L_{i j}} M d x+N d y+\int_{L_{j i}} M d x+N d y\right) \\
&=\sum_{i<j}\left(\int_{L_{i j}} M d x+N d y-\int_{L_{i j}} M d x+N d y\right) \\
&=0
\end{aligned}
$$

This $2^{n d}$ case basically induce almost all situations is the level of Advanced Calculus.

The proof of general cease needs "analysis" and mil be omitted here.

Def 12: The divergence of $\vec{F}=M_{i}+N_{j}$ is defined to be

$$
\operatorname{div} \vec{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}
$$

Note: $\operatorname{div} \vec{F}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\text { Area }\left(\bar{D}_{\varepsilon}(x, y)\right)} \iint\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A$

$$
=\lim _{\varepsilon \rightarrow 0} \frac{1}{\operatorname{Area}\left(\bar{D}_{\varepsilon}(x, y)\right)} \oint_{\partial \bar{D}_{\varepsilon}(x, y)} \vec{F} \cdot \hat{n} d s
$$

called
"flux density".

Notation: $F_{\Omega} f(x, y), \quad \vec{\nabla} f=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j} \quad$ (gradient)

$$
=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}\right) f
$$

It is convenient to denote

$$
\vec{\nabla}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}\right)
$$

Then $\vec{\nabla} \cdot \vec{F}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}\right) \cdot(M \hat{i}+N \hat{j})$

$$
=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}=\operatorname{div} \vec{F}
$$

Hence we also write

$$
\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}
$$

Def 13: Define rot \vec{F} to be

$$
\operatorname{rot} \vec{F}=\frac{\partial N}{\partial X}-\frac{\partial M}{\partial y} \quad(f a \vec{F}=M \hat{i}+N \hat{j})
$$

Note:

$$
\begin{aligned}
\operatorname{rot} \vec{F} & =\lim _{\varepsilon \rightarrow 0} \frac{1}{\operatorname{Area}\left(\bar{D}_{\varepsilon}(x, y)\right)} \iint_{D_{\varepsilon}(x, y)}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\operatorname{Area}\left(\bar{D}_{\varepsilon}(x, y)\right)} \oint_{\partial \vec{D}_{\varepsilon}(x, y)} \vec{F} \cdot \hat{T} d s
\end{aligned}
$$

called
$=$ circulation density
Using $\vec{\nabla}=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}$, we can write

$$
\text { rot } \vec{F}=(\vec{\nabla} \times \vec{F}) \cdot \hat{k}
$$

Since $\vec{F}=M \hat{i}+N \hat{j}+0 \cdot \hat{k} \quad\left(i n \mathbb{R}^{3}\right) \quad(M=M(x, y) \& N=N(x, y))$

$$
\begin{aligned}
& \vec{\nabla}=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z} \quad\left(i \mu \mathbb{R}^{3}\right) \quad\left(\frac{\partial M}{\partial z}=\frac{\partial N}{\partial z}=0\right) \\
& \Rightarrow \vec{\nabla} X \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & 0
\end{array}\right|=\left\{\left.\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
M & N
\end{array} \right\rvert\, \hat{k}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \hat{k}\right. \\
& \text { (check!) }
\end{aligned}
$$

$\Rightarrow \operatorname{rot} \vec{F}=(\vec{\nabla} \times \vec{F}) \cdot \hat{k}$ ie. \hat{k}-component of $\vec{\nabla} \times \vec{F}$.
A name fa $\vec{\nabla} \times \vec{F}$ is curl \vec{F} : \quad curl $\vec{F} \xlongequal{\text { def }} \vec{\nabla} \times \vec{F}$

