eg 42 : Show that $\vec{F}(x, y)=\hat{i}+x \hat{j}$ is not conservative is \mathbb{R}^{2}.
Solus: $\left(\vec{F} \in C^{\infty}\right)\left\{\begin{array}{l}M=1 \\ N=x\end{array} \Rightarrow\left\{\begin{array}{l}\frac{\partial M}{\partial y}=0 \\ H \\ \frac{\partial N}{\partial x}=1\end{array}\right.\right.$
By Cor. to Thm9, \vec{F} is not conservative.

Remark (Important)
Fa a C^{\prime} vector field $\vec{F}=M \hat{i}+N \vec{j}+L \hat{k}$

$$
\vec{F} \text { conservative } \xlongequal{\stackrel{\text { Cor. to Tami }}{\rightleftharpoons}} \xlongequal{\text { M, N, L satisfy the system }} \begin{aligned}
& \text { ? PDEs is the Cor to Thy } 9
\end{aligned}
$$

Answer: NOT TRUE is general, needs extra condition on the domain Ω ("connected" is not enough)
eg 43 Consider the vector field

$$
\vec{F}=\frac{-y}{x^{2}+y^{2}} \hat{i}+\frac{x}{x^{2}+y^{2}} \hat{j}
$$

and the domains $\Omega_{1}=\mathbb{R}^{2} \backslash\left\{(x, 0) \in \mathbb{R}^{2}: x \leqslant 0\right\}$

$$
\Omega_{2}=\mathbb{B}^{2} \backslash\{(0,0)\}
$$

$\left.\Longrightarrow \begin{array}{c}\Omega_{2} \text { doesn't include } \\ \text { the aigin } \\ \text { kutinclude the } \\ \text { negative } X \text {-axis. }\end{array}\right)$

In polar coordinates

$$
\vec{F}=-\frac{\sin \theta}{r} \hat{i}+\frac{\cos \theta}{r} \hat{j}
$$

$$
\Rightarrow\left\{\begin{array}{l}
\text { • } \vec{F} \text { rotates around toe algin anti-clocknisely } \\
\cdot|\vec{F}|=\frac{1}{r} \rightarrow 0 \text { as } r \rightarrow+\infty \\
0|\vec{F}|=\frac{1}{r} \rightarrow+\infty \text { as } r \rightarrow 0 \Rightarrow \vec{F} \text { cannot be extended } \\
\\
\quad \text { to a } C^{\prime} \text { vecta field on } \mathbb{R}^{2} .
\end{array}\right.
$$

Besides $(0,0), \vec{F}$ is C^{\prime}, hence
\vec{F} is C^{l} on Ω_{1}, and aloo
\vec{F} is C^{\prime} on Ω_{2}.

Question : Is \vec{F} conservative on Ω_{1} ?

$$
\text { Is } \vec{F} \text { conservation on } \Omega_{2} \text { ? }
$$

Sole: (1) Fa Ω_{1}, and $(x, y) \in \Omega_{1}$ can be expressed in polar condienates by $\left\{\begin{array}{c}r>0 \\ -\pi<\theta<\pi\end{array} \quad((x, y)=(r \cos \theta, r \sin \theta))\right.$

\Rightarrow doesn't include negative x-ac.
Define $f(x, y)=\theta \quad$ "smooth" on Ω_{1}
Then $\left\{\begin{array}{l}\frac{\partial f}{\partial x}=\frac{\partial \theta}{\partial x}=-\frac{\sin \theta}{r} \\ \frac{\partial f}{\partial y}=\frac{\partial \theta}{\partial y}=\frac{\cos \theta}{r}\end{array} \quad\right.$ (check!)

$$
\Rightarrow \vec{F}=-\frac{\sin \theta}{r} \hat{i}+\frac{\cos \theta}{r} \hat{j}=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}=\vec{\nabla} f \quad \text { on } \Omega_{1}
$$

$\Rightarrow \vec{F}$ conservative on Ω_{ρ}.
(2) For Ω_{2}, the "function" $f(x, y)=\theta$ cannot be extended to a "smooth" function on (the whole) Ω_{2} :

the "function" $f=\theta$ "jumps" at the negation x-axis
$\Rightarrow f$ cannot be extended to a cortiunons function across negative x-axis.

To show that \vec{F} is not cassenvative on Ω_{2}, we consider a closed conure
$C: \vec{\Gamma}(t)=\cos t \hat{i}+\sin t \hat{j}, \quad t \in[-\pi, \pi]$
(unit circle in Ω_{2}, but it is not a curve in Ω_{1})
Then $\oint_{C} \vec{F} \cdot d \vec{r}=\int_{-\pi}^{\pi}\left(-\frac{\sin \theta}{r} \hat{i}+\frac{\cos \theta}{r} \hat{j}\right) \cdot \vec{r}^{\prime}(t) d t$

$$
((r \cos \theta, r \sin \theta)=(\cos t, \sin t))
$$

ie $\gamma=1, \theta=t$

$$
\begin{aligned}
& =\int_{-\pi}^{\pi}(-\sin t \hat{i}+\cos t \hat{j}) \cdot(-\sin t \hat{i}+\cos t \hat{j}) d t \\
& =\int_{-\pi}^{\pi} d t=2 \pi \neq 0
\end{aligned}
$$

By $\operatorname{Thm} 9, \vec{F}$ is not carsenvative on Ω_{2}.

Sumonary

Ref 15 A subset $\Omega \subset \mathbb{R}^{n}, n=20 \Omega 3$, wo called simply-counected if every closed cove in Ω can be contracted to a point in Ω without ever leaving Ω.
(contracted:- defamed contūuoualy)

