$$\frac{eq 42}{Shrw Hat} \overrightarrow{F}(x,y) = \overrightarrow{i} + x \overrightarrow{j} \quad \overrightarrow{i} \quad \underline{ont} \quad conservatione \quad \overrightarrow{in} \ \mathbb{R}^{2}.$$

$$\frac{Solu}{Solu} : (\overrightarrow{F} \in \mathbb{C}^{\infty}) \qquad | \qquad M=1 \qquad \Rightarrow \qquad \begin{pmatrix} \frac{\partial M}{\partial y} = 0 \\ \frac{\partial N}{\partial x} = 1 \\ \frac{\partial N}{\partial x} = 1 \\ \frac{\partial N}{\partial x} = 1 \\ \end{array}$$
By Cor. to Thm 9, \overrightarrow{F} is not conservative.

Remark (Important)
For a C' vector field
$$\vec{F} = M\vec{i} + N\vec{j} + L\vec{k}$$

 \vec{F} conservative $\stackrel{Cor. to Thm9}{\longleftarrow}$ $M, N, L satisfy the system
of PDEs \vec{u} the Cor to Thm9
Answer: NOT TRUE \vec{u} general, needs extra condition on
the domain JZ ("connected" \vec{u} not enough)$

eg43 Consider the vector field

$$\overrightarrow{F} = \frac{-Y}{X^{2}ty^{2}} \stackrel{?}{i} + \frac{X}{X^{2}ty^{2}} \stackrel{?}{j}$$
and the domains $\Omega_{1} = IR^{2} \setminus \widehat{\zeta}(X,0) \in IR^{2} : X \leq 0 \frac{1}{5}$
 $\int \mathbb{Z}_{2} = IR^{2} \setminus \widehat{\zeta}(0,0) \frac{1}{5}$

Besides (0,0),
$$\overrightarrow{F}$$
 is C¹, hence
 \overrightarrow{F} is C¹ on SZ₁, and also
 \overrightarrow{F} is C¹ on SZ₂.

Questians : Is È conservative on JZ1? Is È conservative on JZ2?

Sola: (1) For R1, and (X,y) ∈ R1 can be expressed in polar conductor
by { r>0
1-π < 0<π
1 smooth" on S21
Then {
$$\frac{2f}{2x} = \frac{20}{2x} = -\frac{2i(2)}{r}$$

 $\frac{2f}{2y} = \frac{20}{2y} = \frac{2i(2)}{r}$
 $\frac{2f}{2y} = \frac{20}{2y} = \frac{2i(2)}{r}$
 $\frac{2f}{2} = -\frac{2i(2)}{r} = \frac{2}{2x} + \frac{2i(2)}{2} = \frac{2}{2} + \frac{2i(2)}{2} = \frac{2i(2)}{r} = \frac{2i(2)}{r}$
 $\Rightarrow \vec{F}$ conservative on S2).
(2) For S2, the "function" f(X,Y)=0 cannot be extended to
a "smooth" function on (the whole) S2:
 $\frac{\pi}{r}$
 $\frac{\pi}{r}$
 $\frac{\pi}{r}$
 $\frac{\pi}{r}$
 $\frac{\pi}{r}$
 $\frac{\pi}{r}$
 $\frac{\pi}{r}$
To show that \vec{F} is not calculated on S2, we consider a

closed conve

$$C: \vec{r}(t) = (otil + sintif, t \in [T, T])$$

$$(unit (incle \vec{m}, T2z, but tib not a curve \vec{m}, T2)$$

$$Then \quad \oint_{C} \vec{F} \cdot d\vec{r} = \int_{-T}^{T} (-\frac{sin\theta}{r} \cdot \frac{co\theta}{s} \cdot \hat{j}) \cdot \vec{F}(t) dt$$

$$((rco\theta, rsio) = (cott, sint))$$

$$ie \quad s = 1, \theta = t$$

$$= \int_{-\pi}^{\pi} (-\sin t \hat{i} + \cos t \hat{j}) \cdot (-\sin t \hat{i} + \cot t \hat{j}) dt$$

$$= \int_{-\pi}^{\pi} dt = 2\pi \pm 0$$

By Thm 9, \vec{F} is not canonative on $\Omega 22$.

Summary

JZ1	Γ_{2}
$-f(x,y) = \Theta$ Somooth function on Ω_1	f(x,y) = 0 is <u>not</u> a smooth function on Ω_2 (θ cannot be well-defined on the whole Ω_2)
$C : X^{2} + y^{2} = 1$ is <u>not</u> a curve in S_{1} $((-1, 0) \in C$ but $(-1, 0) \notin S_{1})$	$C = x^2 + y^2 = 1$ is a closed course in SZZ
closed come <u>connot</u> circle around the origin \Rightarrow closed comes can be defermed cartinuously (with in π ,) to a point (in π ,)	d'encloses the "hole" ⇒ C' cannot be defamed continuously (wHain 522) to a point (in 522)

Ref15 A subset SZCIR, n=2023, is called simply-connected if every closed come in R can be <u>contracted</u> to a point in I without ever baring R.

(contracted - defamed containonaly)