Conservative Vecta Field

Ref 14 : Let $\Omega \subset \mathbb{R}^{n}, n=2 \Omega 3$, be open. A vecta field \vec{F} defined on Ω is said to be conservative if $\int_{C} \vec{F} \cdot \hat{T} d s\left(=\int_{C} \vec{F} \cdot d \vec{r}\right)$ along an oriented cove d in Ω depends only on the starting point and end point of d.

Note: This is usually referred as "path independent". is. If $C_{1} \& C_{2}$ are oriented curves with the same starting point A and end point B,
then

$$
\int_{C_{1}} \vec{F} \cdot \hat{T} d s=\int_{C_{2}} \vec{F} \cdot \hat{T} d s
$$

(so the value only depends on the points $A \& B$ (\&direction))
Notation: If \vec{F} is conservative, we some tines write $\int_{A}^{B} \vec{F} \cdot \hat{T} d s$ to denote the comm value of $\int_{C} \vec{F} \cdot \hat{T} d s$ alow y any aiented curve d from A to B.
eg 41: $\vec{F} \equiv \hat{i}$ on \mathbb{R}^{2}

$$
C: \vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}, a \leqslant t \leqslant b
$$

Then $\int_{C} \vec{F} \cdot \hat{T} d s=\int_{C} \vec{F} \cdot d \vec{F}$

$$
\begin{aligned}
& =\int_{a}^{b} \hat{i} \cdot\left(x^{\prime}(t) \hat{i}+y^{\prime}(t) \hat{j}\right) d t \\
& =\int_{a}^{b} x^{\prime}(t) d t=x(b)-x(a)
\end{aligned}
$$

$\vec{r}(a)$

$\vec{r}(b)$
$\uparrow \uparrow$
x-coordinates at $\vec{r}(b) \& \vec{r}(a)$
respectively
$\therefore \int_{C} \vec{F} \cdot \hat{T} d s$ depends only on the starting point \& end point. (for all C)
$\Rightarrow \vec{F}$ is con servative
(Note: $\vec{F}=\vec{\nabla} f$ where $f(x, y)=x$)

This (Fundamental Thence of Line Integral)
Let f be a C^{\prime} function on an open set $\Omega \subset \mathbb{R}^{n}, n=2$ a 3 , and $\vec{F}=\vec{\nabla} f$ be the gradient vecta field of f. Then fa any piecewise smooth aiented cove C on Ω with starting paint A and end point B,

$$
\int_{C} \vec{F} \cdot \hat{T} d s=f(B)-f(A)
$$

Pf: Part I Assume C is a smooth curve ponametrized by

$$
\vec{r}(t), \quad a \leqslant t \leqslant b
$$

Then $\int_{C} \vec{F} \cdot \hat{T} d s=\int_{d} \vec{F} \cdot d \vec{r}$

$$
\left.\begin{array}{l}
=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
=\int_{a}^{b} \vec{\nabla} f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
=\int_{a}^{b} \frac{d}{d t} f(\vec{r}(t)) d t \\
=f(\vec{r}(b))-f(\vec{r}(a)) \quad \text { (Fundamental Thin } \\
\text { of Calculus in } 1 \text {-var. })
\end{array}\right)
$$

Part? Fr a general piecewise smooth cure

$$
C=C_{1} \cup C_{2} \cup \cdots \cup C_{k}
$$

$$
\left(=C_{1}+C_{2}+\cdots+C_{k}\right. \text { in adder to }
$$

indicate that they are joining
end-by-end and the orientation $C_{i}, i=1, \cdots, k$ are correct wot the orientation of C)
where C_{i} is smooth going from A_{i-1} to A_{i}.
(then $A_{o}=A, A_{k}=B$)
Then part 1 unplios

$$
\int_{C} \vec{F} \cdot \hat{T} d s=\int_{i=1}^{k} c_{i} \vec{F} \cdot \hat{T} d s
$$

$$
\begin{aligned}
& =\sum_{i=1}^{k} \int_{C_{i}} \vec{F} \cdot \hat{T} d s \quad\left(b y \operatorname{def} \cdot \cdot^{\prime}\right) \\
& =\sum_{i=1}^{k}\left[f\left(A_{i}\right)-f\left(A_{i-1}\right)\right] \quad(b y \text { pat }) \\
& =f\left(A_{k}\right)-f\left(A_{0}\right) \\
& =f(B)-f(A)
\end{aligned}
$$

Is the converse of The 8 correct? Yes (under a furthe condition) on the doneain Ω

Thm9 Let $\Omega \subset \mathbb{R}^{n}, n=2$ or 3, be open and connected.
\vec{F} is a continuous recta field on Ω. Then the following are equivalent.
(a) \exists a c^{\prime} function $f: \Omega \rightarrow \mathbb{R}$ such that

$$
\vec{F}=\vec{\nabla} f
$$

(b) $\oint_{C} \vec{F} \cdot d \vec{r}=0$ along any closed cove C m Ω.
(c) \vec{F} is conservative.

Remarks: (I) The function f in (a) of Thy 9 is called the potential function of \vec{F}. It is unique up to an additive constant:

$$
\vec{\nabla}(f+c)=\vec{F}, \quad \forall \text { cost. } c
$$

(2) $\vec{F}=M \vec{i}+N \hat{j}+L \hat{k}=\vec{\nabla} f \Leftrightarrow M d x+N d y+L d z=d f$
(Same for 2-dim)
In this case, $M d x+N d y+L d z$ (or $M d x+N d y$ in dime. 2) is called an exact differential furn.

Pf $=\quad "(a) \Rightarrow(b)^{\prime \prime}$
If f is C^{\prime} and $\vec{F}=\vec{\nabla} f$ and
$\vec{r}:[a, b] \rightarrow \Omega$ ponametrizes the closed carve C. then $\vec{r}(a)=\vec{r}(b) \xlongequal{\text { denote }} A$

Fundamental Thy of Line Integral \Rightarrow

$$
\oint_{C} \vec{F} \cdot d \vec{r}=f(\vec{F}(b))-f(\vec{r}(a))=f(A)-f(A)=0
$$

" $(b) \Rightarrow(c)$ " Suppose $C_{1} \& C_{2}$ are minted cures with starting point A and end point B.

Then $C_{1}-C_{2}\left(\right.$ ie $\left.C_{1} \cup\left(-C_{2}\right)\right)$ is an oriented closed cure (with starting point $=A=$ endpoint)

Then by part (b)

$$
\begin{aligned}
O=\oint_{C_{1}-C_{2}} \vec{F} \cdot d \vec{r} & =\oint_{C_{1}} \vec{F} \cdot d \vec{r}+\oint_{\left(-C_{2}\right)} \vec{F} \cdot d \vec{r} \\
& =\oint_{C_{1}} \vec{F} \cdot d \vec{r}-\oint_{C_{2}} \vec{F} \cdot d \vec{r}
\end{aligned}
$$

Since $C_{1} \& C_{2}$ are arbitrary, \vec{F} is conservative. " $(c) \Rightarrow(a)$ " (it requies us to solve a system of $P D E$.) Assume $n=2$ for simplicity (other dimensions an similar)

Let $\vec{F}=M \hat{i}+N \hat{j}$ be conservative Fix a point $A \in \Omega$

Then far any point $B \in \Omega$, defūe

$$
\left(\vec{F}_{\underset{\downarrow}{i} \text { cmeserative })}\right.
$$

$$
f(B)=\int_{A}^{B} \vec{F} \cdot \hat{T} d S=\frac{\text { common value of } \int_{C} \vec{F} \cdot \hat{T} d s \text { fa any }}{C \text { from } A \text { to } B .}
$$

Since \vec{F} is conservative, $f(B)$ is well-defined.

We've also used the assumption that Ω is connected.
Otherwise there is no path
from A to B if A, B belong to different connected components.

Claim $\vec{F}=\vec{\nabla} f$
Pf of claim: $\frac{\partial f}{\partial x}(B)=\lim _{\varepsilon \rightarrow 0} \frac{f(B+\varepsilon \hat{i})-f(B)}{\varepsilon}$

horizontal (straight) lime segment from B to $B+\varepsilon \hat{i}$ with IE| sufficiently small such that

$$
C+L \subset \Omega \text { (open) }
$$

where C is an (arbitrary) aiented cure from A to B.
Then $f(B+\varepsilon \hat{i})=\int_{A}^{B+\varepsilon \vec{i}} \vec{F} \cdot d \vec{r}$

$$
\begin{aligned}
& =\int_{C+L} \vec{F} \cdot d \vec{r}=\int_{C} \vec{F} \cdot d \vec{r}+\int_{L} \vec{F} \cdot d \vec{r} \\
& =f(B)+\int_{L} \vec{F} \cdot d \vec{r} \\
\therefore \quad \frac{f\left(B+\varepsilon_{i}\right)-f(B)}{\varepsilon} & =\frac{1}{\varepsilon} \int_{L} \vec{F} \cdot d \vec{r}=\frac{1}{\varepsilon} \int_{0}^{\varepsilon}(M \hat{i}+N \hat{j}) \cdot d \vec{r}
\end{aligned}
$$

Since L can be parametrized by $(x+t, y), 0 \leqslant t \leqslant \varepsilon$ if $B=(x, y)$, we have

$$
\begin{aligned}
\frac{f\left(B+\varepsilon_{i}\right)-f(B)}{\varepsilon} & =\frac{1}{\varepsilon} \int_{0}^{\varepsilon}[M(x+t, y) \hat{i}+N(x+t, y) \hat{j}] \cdot(\hat{i} d t) \\
& =\frac{1}{\varepsilon} \int_{0}^{\varepsilon} M(x+t, y) d t \\
\Rightarrow \quad \frac{\partial f}{\partial x}(B)= & \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} M(x+t, y) d t \\
& =M(x, y) \quad(\text { by MVF \& M is cts }) \\
\quad & \quad \text { ar Fundamental Tho of Calculus })
\end{aligned}
$$

Similarly $\frac{\partial f}{\partial y}(B)=N(x, y)$ by considering

(vertical lime segment)

So $\vec{\nabla} f=\vec{F}$
Süce \vec{F} is cts, $\frac{\partial f}{\partial x}=M \& \frac{\partial f}{\partial y}=N$ are ts.
$\therefore f$ is C^{\prime}

Corollary (to Thy 9)
Let \vec{F} be conservative and C^{\prime} " $n=3^{\prime \prime}$ If $\vec{F}=M \hat{i}+N \hat{j}+L \hat{k} \quad\left(o n \Omega \subset \mathbb{R}^{3}\right)$
then $\quad\left\{\begin{array}{l}\frac{\partial M}{\partial y}=\frac{\partial N}{\partial X} \\ \frac{\partial N}{\partial z}=\frac{\partial L}{\partial y} \\ \frac{\partial L}{\partial X}=\frac{\partial M}{\partial z}\end{array}\right.$

$$
\text { " } n=2 \text { " If } \vec{F}=M \hat{i}+N \hat{j}
$$

then $\quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial X}$
Pf: \vec{F} conservative $\stackrel{\text { Thu }}{\Rightarrow} \vec{F}=\vec{\nabla} f$ fa some function f wine $\quad \frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}+\frac{\partial f}{\partial z} \hat{k}=M \hat{i}+N \hat{j}+L \hat{k}$

$$
\vec{F} \in C^{1} \Rightarrow f \in C^{2}
$$

Hence mixed derivatives the (Clairaunt's Thm)

$$
\left\{\begin{array}{l}
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial N}{\partial x} \\
\frac{\partial N}{\partial z}=\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial z}\right)=\frac{\partial L}{\partial y} \\
\frac{\partial L}{\partial x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial z}\right)=\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial M}{\partial z}
\end{array}\right.
$$

(" $n=2$ " is incluked)

