Physics
(1) $\vec{F}=$ Force field
C = oriented curve
then $W=\int_{C} \vec{F} \cdot \hat{T} d s$
is the wakdone in moving an object alloy d,
(2) $\vec{F}=$ velocity vecta field of fluid
C = oriented combe
Then $\quad F$ low $=\int_{d} \vec{F} \cdot \hat{T} d S$

Flow along the cone d.
If c is "closed", the flow is also called a circulation.
Def 13 : A curve is said to be
(i) simple if it does not intersect with itself except possibly at and points.
(ii) closed if starting point = end point.
(iii) simple closed cane if it is both single and closed.

Note:

Note:	Yo	Yes	NO
simple	Nos		
closed	Yes	NO	NO

(3) $\vec{F}=$ velocity of fluid
$C=$ oriented plane conve $\left(C \subset \mathbb{R}^{2}\right)$ (Simple, closed) wish parametrization $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$
$\hat{n}=$ outurard-pountong mint normal (vecta) to the curve d

$$
\hat{n}=\hat{T} \times \hat{k}
$$

if C is of auti-clockuise cientation

$$
\hat{n}=-\hat{T} \times \hat{k}
$$

if C is of clockwise orientation.

Formula for \hat{n} (wry the parametrization $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j})$
Recall $\hat{T}=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{x^{\prime}(t) \hat{i}+y^{\prime}(t) \hat{j}}{\left\|\vec{r}^{\prime}(t)\right\|}$

$$
\left(\text { in arc-length parametrization }=\hat{T}=\frac{d \vec{T}}{d S}=\frac{d x}{d S} \hat{i}+\frac{d y}{d s} \hat{j}\right)
$$

Anti-clockrise:

$$
\begin{aligned}
& \hat{n}=\hat{T} x \hat{k}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{x^{\prime}}{\left\|\vec{r}^{\prime}\right\|} & \frac{y^{\prime}}{\left\|\vec{p}^{\prime}\right\|} & 0 \\
0 & 0 & 1
\end{array}\right| \\
& \Rightarrow \quad \hat{n}=\frac{y^{\prime}(t) \hat{i}-x^{\prime}(t) \hat{j}}{\left\|\vec{r}^{\prime}(t)\right\|} \quad\left(0 \quad \hat{n}=\frac{d y}{d s} \hat{i}-\frac{d x}{d s} \hat{j}\right)
\end{aligned}
$$

Clockwise: $\quad \hat{n}=\frac{-y^{\prime}(t) \hat{i}+x^{\prime}(t) \hat{j}}{\left\|\vec{r}^{\prime}(x)\right\|} \quad\left(a \hat{n}=-\frac{d y}{d s} \hat{i}+\frac{d x}{d s} \hat{j}\right)$
Flux of \vec{F} across $C \stackrel{\text { def }}{=} \int_{C} \vec{F} \cdot \hat{n} d s \quad\left(\begin{array}{c}\text { amount of flied } \\ \text { getting out of the } \\ \text { closed cove } C\end{array}\right)$
If $\vec{F}=M(x, y) \hat{i}+N(x, y) \hat{j}$
and $\vec{F}(t)=x(t) \hat{i}+y(t) \hat{j}$ is auti-clockwise parametrization of C (closed carve)
Then

Flux of \vec{F} across C

$$
\begin{aligned}
& =\oint_{C}(M \hat{i}+N \hat{j}) \cdot\left(\frac{d y}{d s} \hat{i}-\frac{d x}{d s} \hat{j}\right) d s \\
& =\oint_{C} M d y-N d x
\end{aligned}
$$

Remark: - \oint : curve is closed $\&$ in anti-clockevise direction

- $\Phi=$ curve is closed $\&$ in clockwise direction (not a connwon notation)
- But in some books, only " $\oint^{\prime \prime}$ is used, NO arrow, Then one reeds to determine the orientation from the context.
- Convention: If no crientation is mentioned, " \oint " without arrow means auti-clockwrise nientation (positive orientation)
eg 40 : Let $\vec{F}=(x-y) \hat{i}+x \hat{j}$

$$
C=x^{2}+y^{2}=1
$$

Find the flow (anti-clocknisely) along C and flux across C.

Soln: Let $\vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}, \quad 0 \leqslant t \leqslant 2 \pi$
Note : correct nieutation

$$
\begin{aligned}
\text { Then flow } & =\oint_{C} \vec{F} \cdot \hat{T} d S=\oint_{C} \vec{F} \cdot d \vec{r} \\
& =\int_{0}^{2 \pi}[(\cos t-\sin t) \hat{i}+\cos t \hat{j}] \cdot[-\sin t \hat{i}+\cos t \hat{j}] d t \\
& =\int_{0}^{2 \pi}\left[-\sin t(\cos t-\sin t)+\cos ^{2} t\right] d t \\
& =\cdots=2 \pi \quad \text { (check!) }
\end{aligned}
$$

$$
\begin{aligned}
F \operatorname{lux} & =\oint_{C} \vec{F} \cdot \hat{n} d s=\oint_{C} M d y-N d x \quad\binom{M=x-y}{N=x} \\
& =\int_{0}^{2 \pi}(\cos t-\sin t) d(\sin t)-\cos t d(\cos t) \\
& =\int_{0}^{2 \pi}[(\cos t-\sin t) \cos t-\cos t(-\sin t)] d t \\
& =\cdots=\pi \quad \text { (check!) }
\end{aligned}
$$

Remark: If C is an oriented curve, then denote by "-C" the oriented curve with opposite orientation

- If f is a scalar function

$$
\int_{C} f d s=\int_{-C} f d s
$$

as "ds" is not oriented, just "length"

- If \vec{F} is a vecta field
flow

$$
\int_{C} \vec{F} \cdot \hat{T} d s=-\int_{-C} \vec{F} \cdot \hat{T} d s
$$

this \hat{T} is the " $\hat{T} f u-C$ "
Moe precise facula:

$$
\int_{C} \vec{F} \cdot \hat{T}_{C} d s=-\int_{-C} \vec{F} \cdot \hat{T}_{-C} d s
$$

- But fa flux $\oint_{c} \vec{F} \cdot \hat{n} d s=\oint_{-d} \vec{F} \cdot \hat{n} d s \quad \hat{n}$ always outward

Summary:

$\underline{\text { scalar } f}$	$\int_{C} f d s$ indep. of cientation	$d s$ have no direction
$\frac{\text { vector } \vec{F}}{f l o w}$	$\int_{d} \vec{F} \circ \hat{T} d s$ depends on mentation	\hat{T} depends on direction
flux	$\int_{C} \vec{F} \cdot \hat{n} d s$ indef. of aneitation	\hat{n} always outward

