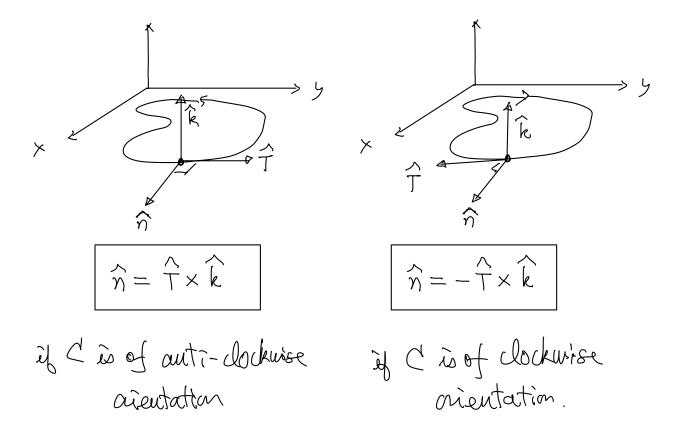
	<u>ote</u> :	\mathbf{S}			
	surple	ND	Yes	NO	Yes
_	closed	Yes	No	NO	Tes



Famula for
$$\hat{n}$$
 (with the parametrization $\hat{F}(t) = K(t)\hat{i} + y(t)\hat{j}$)
Recall $\hat{T} = \frac{\hat{F}(t)}{\|\hat{F}(t)\|} = \frac{K(t)\hat{i} + y(t)\hat{j}}{\|\hat{F}(t)\|}$
(in an e-length parametrization = $\hat{T} = \frac{d\hat{T}}{dS} = \frac{dx}{dS}\hat{i} + \frac{dy}{dS}\hat{j}$)
Anti-clockwise:
 $\hat{n} = \hat{T} \times \hat{k} = \begin{vmatrix} \hat{x} & \hat{j} & \hat{k} \\ \frac{x'}{\|\hat{F}'\|} & \frac{y'}{\|\hat{F}'\|} & 0 \\ 0 & 0 & 1 \end{vmatrix}$
 $\Rightarrow \hat{n} = \frac{y(t)\hat{x} - x(t)\hat{j}}{\|\hat{F}'(t)\|} \left(a \cdot \hat{n} = \frac{dy}{dS}\hat{i} - \frac{dx}{dS}\hat{j}\right)$
Clockwise: $\hat{n} = -\frac{y'(t)\hat{i} + x(t)\hat{j}}{\|\hat{F}'(t)\|} \left(a \cdot \hat{n} = \frac{dy}{dS}\hat{i} - \frac{dx}{dS}\hat{j}\right)$
Electropy of \vec{F} across $\hat{C} = \frac{dy}{\hat{L}}\hat{j} + x(t)\hat{j}$ (or $\hat{n} = \frac{dy}{dS}\hat{i} + \frac{dx}{dS}\hat{j}$)
 \hat{F}_{lux} of \vec{F} across $\hat{C} = \frac{dy}{\hat{L}}\hat{j} + \hat{K}(t)\hat{j}$ (and $\hat{f} = \frac{dy}{dS}\hat{i} + \frac{dx}{dS}\hat{j}$)
 \hat{F}_{lux} of $\vec{F} = M(xy)\hat{i} + N(xy)\hat{j}$ and $\hat{F}(t) = x(t)\hat{i} + y(t)\hat{j}$ is anti-clockwise parametrization of f and $\hat{F}(t) = x(t)\hat{i} + y(t)\hat{j}$ is anti-clockwise parametrization of f then

Flux of
$$\vec{F}$$
 across \vec{C}
= $(\int_{C} (M\hat{i} + N\hat{j}) \cdot (\frac{dy}{ds}\hat{i} - \frac{dx}{ds}\hat{j}) ds$
= $(\int_{C} Mdy - Ndx)$

rieutation (positive orientation)

$$\underline{eq40}: \text{ let } \vec{F} = (x-y)\hat{i} + x\hat{j}$$

$$C: x^{2}+y^{2} = 1$$
Find the flow (anti-clockwisely) along C and
flux across C.

$$\underline{Soln}: \text{ let } \vec{F}(t) = \cot \hat{i} + i i t \hat{j}, \quad 0 \le t \le 2\pi$$
Note: correct orientation
Then flow = $\oint_{C} \vec{F} \cdot \hat{f} \, dS = \oint_{C} \vec{F} \cdot d\vec{r}$

$$= \int_{0}^{2\pi} [(\cot t - i i t)\hat{i} + (\cot \hat{j})] \cdot [-i i t \hat{i} + (\cot \hat{j})] dt$$

$$= \int_{0}^{2\pi} [-i i t ((\cot t - i i t) + (\cot \hat{j})] \cdot (-i t \hat{i} + (\cot \hat{j})] dt$$

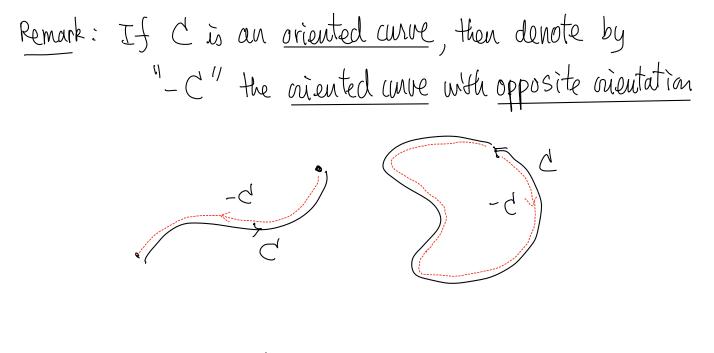
$$= \cdots = 2\pi \quad (check!)$$

$$Flux = \oint_{C} \vec{F} \cdot \vec{h} \, ds = \oint_{C} Mdy - Ndx \qquad (N = x)$$

$$= \int_{0}^{2\pi} (\cot - int) d(int) - \cot d(int)$$

$$= \int_{0}^{2\pi} [(\cot - int) \cot - \cot (-int)] dt$$

$$= \dots = \Pi \qquad (check!)$$



• If f is a scalar function

$$\int_C f ds = \int_{-C} f ds$$
 as "ds" is not oriented,
 $\int_C f ds = \int_{-C} f ds$ just "length"

• If
$$\vec{F}$$
 is a vecta field
flow $\int_C \vec{F} \cdot \vec{T} ds = -\int_{-C} \vec{F} \cdot \vec{T} ds$
this \vec{T} is the " \vec{T} funct"

More precise formula: $\int_{C} \vec{F} \cdot \hat{T}_{c} \, dS = - \int_{-C} \vec{F} \cdot \hat{T}_{-C} \, dS$

• But fa <u>flux</u>

$$\oint_{\mathcal{C}} \vec{F} \cdot \hat{\eta} ds = \oint_{\mathcal{C}} \vec{F} \cdot \hat{\eta} ds \qquad \hat{\eta}$$

always outward

<u>Summary:</u>

<u>scalar</u>	Sit des indep. of cientation	ds trave no direction
<u>vecta</u> È flou	$\int_{\mathcal{C}} \vec{F} \cdot \vec{F} ds$ depends on mentation	7 depends on direction
flux	Sc F. nds indep. of mentation	n always outward