Vector Analysis
Notation: Usually in textbooks, vector are denoted by boldface is, but hard to do it on screen, so my notation of vectas are:

$$
\left\{\begin{array}{l}
\text { general vectas : } \vec{V}, \vec{F}, \vec{r}, \vec{\nabla}, \ldots \\
\text { unit vectus }=\hat{i}, \hat{j}, \hat{k}, \hat{n}, \hat{T}, \ldots
\end{array}\right.
$$

(differential)

and use $\|\vec{V}\|$ to denote the length of \vec{v} to avoid confusion with absolute value $|x|$

Line integrals in $\mathbb{R}^{3}\left(\mathbb{R}^{n}\right)$ (path integrals)

Ref 9: The lime integral of a function f on a curve (path, line) C with parametrization

$$
\begin{aligned}
\vec{r}:[a, b] & \longrightarrow \mathbb{R}^{3} \\
\text { (passion vesta) } \psi & \longrightarrow(x(t), y(t), z(t))
\end{aligned}
$$

is $\quad \int_{C} f(\vec{r}) d s=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(\vec{F}\left(t_{i}\right)\right) \Delta S_{i}$
where P is a partition of $[a, b]$, and

$$
\Delta s_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}+\left(\Delta z_{i}\right)^{2}}
$$

i.e. $d s=$ length element of the curse

Remarks:
(1) If $f \equiv 1, \quad \int_{C} d s=\operatorname{arc}-$ length of C
(2) The definition is well-defiued, ie. the RUtS in the definition is independent of the parametrization $\vec{r}(t)$.

Def 9^{\prime} (Formula for line integral)
Notations as in Def 9, then

$$
\int_{C} f(\vec{r}) d s=\int_{a}^{b} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t
$$

where $\vec{r}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$

Since

$$
\begin{aligned}
\overrightarrow{t_{\Delta S_{i}}} & =\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}+\left(\Delta t_{i}\right)^{2}} \\
& =\sqrt{\left(\frac{\Delta x_{i}}{\Delta t_{i}}\right)^{2}+\left(\frac{\Delta y_{i}}{\Delta t_{i}}\right)^{2}+\left(\frac{\Delta z_{i}}{\Delta t_{i}}\right)^{2}} \Delta t_{i} \\
& \cong \sqrt{x^{\prime}\left(t_{i}\right)^{2}+y^{\prime}\left(t_{i}\right)^{2}+z^{\prime}\left(t_{i}\right)^{2}} \Delta t_{i} \\
& =\left\|\vec{r}^{\prime}\left(t_{i}\right)\right\| \Delta t_{i}
\end{aligned}
$$

Remarks (1) "dst $\quad\left\|\vec{r}^{\prime}(t)\right\| d t^{\prime \prime}$ is usually referred as the arc-length element,
where $\vec{r}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$ and $\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}}$.
(2) Suppose the cure C is parametrized by a new parameter \hat{t}

$$
\begin{array}{cc}
t & \tilde{t} \\
\hat{i} & (t \leftrightarrow \tilde{t} \text { is increasing } \\
{[a, b]} & {[\tilde{a}, \tilde{b}]}
\end{array}
$$

then

$$
\begin{aligned}
d s & =\left\|\vec{r}^{\prime}(t)\right\| d t=\left\|\frac{d \vec{r}}{d t}(t)\right\| d t \\
& =\left\|\frac{d \vec{r}}{d \tilde{t}} \cdot \frac{d \tilde{t}}{d t}\right\| d t=\left\|\frac{d \vec{r}}{d \tilde{t}}\right\|\left|\frac{d \tilde{t}}{d t}\right| d t=\left\|\frac{d \vec{r}}{d \tilde{t}}\right\| d \tilde{t}
\end{aligned}
$$

$\therefore d s$ and hence $\int_{C} f(\vec{F}) d s$ is independent of the parametrization of C.
(3) If $\vec{r}(t)$ is only piecen'se differentiable, then the RHS of Ref g' becomes a sum i:

such that $\left.\vec{r}\right|_{\left[t_{i-1}, t_{i}\right]}$ is differentiable, then

$$
\int_{d} f(\vec{r}) d s=\sum_{i=1}^{k} \int_{t_{i-1}}^{t_{i}} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t
$$

eg 32: $f(x, y, z)=x-3 y^{2}+z$
$C=$ (straight) lime segment joining the origin and $(1,1,1)$
Find $\int_{d} f(x, y, z) d s$
Som: Parametrize C by

$$
\begin{aligned}
\vec{r}(t) & =(0,0,0)+t[(1,1,1)-(0,0,0)], \quad 0 \leqslant t \leqslant 1 \\
& =(t, t, t)
\end{aligned}
$$

(ie. $\quad X(t)=t, y(t)=t, z(t)=t$)

$$
\begin{aligned}
\Rightarrow \vec{r}^{\prime}(t) & =(1,1,1), \quad \forall t \in[0,1] \\
\Rightarrow \int_{C} f(\vec{r}) d s & =\int_{0}^{1}\left[x(t)-3 y(t)^{2}+z(t)\right]\left\|\vec{r}^{\prime}(t)\right\| d t \\
& =\int_{0}^{1}\left(t-3 t^{2}+t\right) \sqrt{3} d t=0 \quad(\text { check! }) ;
\end{aligned}
$$

eg 33: Let C be a curve in \mathbb{R}^{2} (plane curve) (ie. $z(t) \equiv 0$) and it has 2 parametrizations

$$
\begin{array}{ll}
\vec{r}_{1}(t)=(\cos t, \sin t), & t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
\vec{r}_{2}(t)=\left(\sqrt{1-t^{2}},-t\right), & t \in[-1,1]
\end{array}
$$

Suppose $f(x, y)=x$. Find $\int_{c} f(x, y) d s$.
(We singly omit the z-variable, as C is a plane curve and f is in dep. of z)

Soon: (1) $\vec{r}_{1}(t)=(\cos t, \sin t),-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$

$$
\begin{aligned}
\int_{C} f(x, y) d s & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \cdot\left\|(\cos t, \sin t)^{\prime}\right\| d t \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t d t=2 \quad(\text { check }!)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \vec{\Gamma}_{2}(t)=\left(\sqrt{1-t^{2}},-t\right),-1 \leqslant t \leqslant 1 \\
& \begin{aligned}
\int_{C} f(x, y) d s & =\int_{-1}^{1} \sqrt{1-t^{2}} \sqrt{\left(\frac{d}{d t} \sqrt{1-x^{2}}\right)^{2}+\left(\frac{d}{d t}(-t)\right)^{2}} d t \\
& \left.=\cdots=\int_{-1}^{1} d t=2 \quad \text { (check! }\right)
\end{aligned}
\end{aligned}
$$

This verifies the fact that the line integral is indef. of the ponamet rization. (Note: $\vec{r}_{1}(t) \& \vec{r}_{2}(t)$ are in opposite directions, see later discussion.)

Prop 7 : if C is a preconise smooth curve made by joining $C_{1}, C_{2}, \ldots C_{n}$ end-to-end, then

$$
\int_{C} f d s=\sum_{i=1}^{n} \int_{C_{i}} f d s
$$

(Pf: Clear from the remark (3) of $\operatorname{Def} G^{\prime}{ }^{\prime}$, but C_{i} can be) piecemse differentiable in this Prop.

Remark: "end-to-end" means "end point of $C_{k-1}=$ initial paint of C_{k} ".
eg 34: Let $f(x, y, z)=x-3 y^{2}+z$ (again)
C_{1}, C_{2}, C_{3} are (straight) line segments as in the figure

We already did $\int_{C_{1}} f d s=0 \quad(\operatorname{eg} 32)$
One can similarly calculate

$$
\begin{aligned}
\int_{C_{2} \cup C_{3}} f d s & =\int_{C_{2}} f d s+\int_{C_{3}} f d s \\
& =-\frac{\sqrt{2}}{2}-\frac{3}{2} \quad\left(E_{x}!\right)
\end{aligned}
$$

(Fa instance, $\int_{d_{3}} f d s=\int_{0}^{1}\left(1-3(1)^{2}+t\right) d t$ (walt parametrization?))
The observation is $\int_{C_{1}} f d s=0 \neq \int_{C_{2} \cup C_{3}} f d s$
even $C_{1} \& C_{2} \cup C_{3}$ have the same beginning and end points!
(Remark: different from 1-variable calculus)

Conclusion: Line integral of a function depends, not only on the end points, but also the path.

Nectar Fields
Ref $10=$ Let $D \subset \mathbb{R}^{2}$ a \mathbb{R}^{3} be a region, then a vecta field on D is a mapping $\vec{F}: D \rightarrow \mathbb{R}^{2}$ a \mathbb{R}^{3} resecectiocty

In component form:

$$
\begin{aligned}
& \mathbb{R}^{2}=\vec{F}(x, y)=M(x, y) \hat{i}+N(x, y) \hat{j} \\
& \mathbb{R}^{3}=\vec{F}(x, y, z)=M(x, y, z) \hat{i}+N(x, y, z)^{\hat{j}}+L(x, y, z) \hat{k}
\end{aligned}
$$

where M,N,L are functions on D called the components of \vec{F}.
eg $35 \vec{F}(x, y)=\frac{-y \hat{i}+x \hat{j}}{\sqrt{x^{2}+y^{2}}}$ on $\mathbb{R}^{2} \backslash\{(0,0)\}$

$$
=-\sin \theta \hat{i}+\cos \theta \hat{j} \quad \text { (in polar condiuates) }
$$

Properties of $\vec{F}:$ (i) $\|\vec{F}(x, y)\|=1$
(ii) $\vec{F} \perp \vec{F}(x, y)=x \hat{i}+y \hat{j}=r(\cos \hat{i}+\sin \theta \hat{j})$
eg 36 (Gradient vector field of a function)
(i) $f(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$

$$
\vec{\nabla} f(x, y) \stackrel{\text { def }}{=}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=(x, y)=x \hat{i}+y \hat{j}=\vec{r}(x, y)
$$

position vesta field.
(ii) $f(x, y, z)=x$

$$
\vec{\nabla} f(x, y, z) \stackrel{\text { def }}{=}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \equiv(1,0,0)=\hat{i}
$$

(a constant vecta field)
eg 37 (Vector field along a conve)
Let C be a cure in \mathbb{R}^{2} parametrized by

$$
\begin{aligned}
\vec{\gamma}=[a, b] & \rightarrow R^{2} \\
\psi & \psi \\
t & \mapsto(x(t), y(t))=\vec{\gamma}(t)
\end{aligned}
$$

Recall: $\hat{T}=\frac{\vec{\gamma}^{\prime}(t)}{\left\|\vec{\gamma}^{\prime}(t)\right\|}$

= unit tangent vector field along C (same paint, but different vesta)

Note: this \hat{T} defied only on C (far a general ave), but not outside C.
(vectu field along a curve may not come from a vecta field) on a region.

Remark: for eg 37.
If we use $d s=\left\|\vec{\gamma}^{\prime}(t)\right\| d t$, then

$$
\hat{T}=\frac{\vec{\gamma}^{\prime}(t)}{\left\|\vec{\gamma}^{\prime}(t)\right\|}=\frac{\frac{d \vec{\gamma}}{d t}}{\frac{d s}{d t}}=\frac{d \vec{\gamma}}{d s} \quad \begin{aligned}
& \text { (by Chain rule) }) \\
& \text { (ifs is a function of } t)
\end{aligned}
$$

where "arc-lingth s" is defined by

$$
S(t)=\int_{t_{0}}^{t}\left\|\vec{\gamma}^{\prime}(t)\right\| d t
$$

A parametrization of a cave C by are-length S is called arc-length parametrization:

$$
\begin{aligned}
\vec{\gamma}(s)= & \operatorname{arc}-\text { length parametrization } \\
& \Rightarrow\left\|\frac{d \vec{\gamma}}{d s}(s)\right\|=1
\end{aligned}
$$

Def 11 A vector field is defined to be
continuous / differentiable / c^{k} if the component functias are.
eg 38:

$$
\left\{\begin{array}{l}
\vec{F}(x, y)=\vec{F}(x, y)=x \hat{i}+y \hat{j} \text { is } C^{\infty} \quad \text { (position vector) } \\
\vec{F}(x, y)=\frac{-y \hat{i}+x \vec{j}}{\sqrt{x^{2}+y^{2}}} \quad \text { is not cartiunas is } \mathbb{R}^{2} \\
\quad\left(\text { but cuntusucas is } \mid R^{2} \backslash\{(0,0)\}\right)
\end{array}\right.
$$

Line integral of vector field
Ref 12: Let C be a curve with "crioutation" given by a parametrization $\vec{r}(t)$ with $\vec{r}^{\prime}(t) \neq 0, \forall t$. Refine the lime integral of a vecta field \vec{F} along C to be

$$
\int_{C} \vec{F} \cdot \hat{T} d s
$$

where $\hat{T}=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}$ is the mit tangent vecta field along C.

Note: If $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}(n=2$ or 3$)$

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \underbrace{\hat{T} d s} & =\int_{a}^{b} \vec{F}(r(t)) \cdot \frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}\left\|\vec{r}^{\prime}(t)\right\| d t \\
& =\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \underbrace{\vec{r}^{\prime}(t) d t}
\end{aligned}
$$

\therefore naturally, we denote $d \vec{r}=\hat{T} d s$

and

$$
\int_{C} \vec{F} \cdot \hat{T} d s=\int_{C} \vec{F} \cdot d \vec{r}
$$

eg 38:

$$
\begin{aligned}
& \vec{F}(x, y, z)=z \hat{i}+x y \hat{j}-y^{2} \hat{k} \\
& C=\vec{r}(t)=t^{2} \hat{i}+t \hat{j}+\sqrt{t} \hat{k}, \quad 0 \leqslant t \leqslant 1
\end{aligned}
$$

Som $d \vec{r}=\left(2 t \hat{i}+\hat{j}+\frac{1}{2 \sqrt{t}} \hat{k}\right) d t$

$$
\begin{aligned}
& \& \quad \int_{C} \vec{F} \cdot \hat{T} d s=\int_{C} \tilde{F} \cdot d \vec{r} \\
& \quad=\int_{0}^{1}\left(\sqrt{t} \hat{i}+t^{2} \cdot t \hat{j}-t^{2} \hat{k}\right) \cdot\left(2 t \hat{i}+\hat{j}+\frac{1}{2 \sqrt{t}} \hat{k}\right) d t \\
& \quad=\int_{0}^{1}\left(2 t \sqrt{t}+t^{3}-\frac{t^{2}}{2 \sqrt{t}}\right) d t=\frac{17}{20}(\text { check! })
\end{aligned}
$$

In components fum:
Line integral of $\vec{F}=M \hat{i}+N \hat{j}$ along

$$
C: \vec{r}(t)=g(t) \hat{i}+h(t) \hat{j}
$$

can be expressed as

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \vec{T} d s & =\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b}\left(\vec{F} \cdot \frac{d \vec{r}}{d t}\right) d t \\
& =\int_{a}^{b}\left(M g^{\prime}+N h^{\prime}\right) d t
\end{aligned}
$$

(mae explicitly: $\quad \int_{a}^{b}\left[M(g(t), h(t)) g^{\prime}(t)+N(g(t), h(t)) h^{\prime}(t)\right] d t$)

Note that, $\left\{\begin{array}{l}x=g(t) \\ y=h(t)\end{array}\right.$

$$
\left.\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
d x=g^{\prime}(t) d t \\
d y \\
d y
\end{array}\right. \\
& \therefore \quad h^{\prime}(t) d t
\end{aligned} \right\rvert\, \vec{F} \cdot \hat{T} d s=\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b} M d x+N d y
$$

Subilarly, fa 3-duí.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \hat{T} d s= & \int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b} M d x+N d y+L d z \\
& \left(\text { for } \vec{F}=M \vec{i}+N_{j}+L \hat{k}\right)
\end{aligned}
$$

Another way to justify the notation:

$$
\vec{\gamma}=(x, y, z) \text { the position rectu }
$$

$$
\Rightarrow \quad d \vec{r}=(d x, d y, d z) \quad \text { (natural notation) }
$$

The er

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \hat{T} d s & =\int_{C} \vec{F} \cdot d \vec{r}=\int_{C}(M, N, L) \cdot(d x, d y, d z) \\
& =\int_{C} M d x+N d y+L d z
\end{aligned}
$$

eg 39: Evaluate $I=\int_{C}-y d x+z d y+2 x d z$
where $C=\vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}+t \hat{k} \quad(0 \leqslant t \leqslant 2 \pi)$

$$
=(\cos t, \sin t, t)
$$

Soln

$$
\begin{aligned}
I & =\int_{0}^{2 \pi}(-\sin t d \cos t+t d \sin t+2 \cos t d t) \\
& =\int_{0}^{2 \pi}(-\sin t \cdot(-\sin t)+t \cdot \cos t+2 \cos t) d t \\
& =\cdots=\pi(\operatorname{chech}!) \\
(d \vec{r} & \left.=(-\sin t, \cos t, 1) d t \quad \& \vec{r}^{\prime}(t)=(-\sin t, \cos t, 1)\right)
\end{aligned}
$$

