$\operatorname{ceg} 25$

$$
f(x, y, z)=\left\{\begin{array}{cl}
\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+z^{2}}}, & \text { if }(x, y, z) \neq(0,0,0) \\
0, & \text { if }(x, y, z)=(0,0,0)
\end{array}\right.
$$

$\binom{$ Infract, f is continual, but it is sufficient to know $f}{$ is contin nous except at the rigigin $(0,0,0)}$ is cantinnows except at the origin $(0,0,0)$

Let $D=$ unit ball centered at nigin intersecting with the $1^{\text {st }}$ octant

Find the average of f over D.
Sols: D can be represented
in sphaical cordeirates:

$$
\left\{\begin{array}{l}
0 \leqslant \rho \leqslant 1 \\
0 \leqslant \phi \leqslant \frac{\pi}{2} \\
0 \leqslant \theta \leqslant \frac{\pi}{2}
\end{array}\right.
$$

And $f(x, y, z)=\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{\rho^{2} \sin ^{2} \phi}{\rho} \quad((x, y, z) \neq(0,0,0))$

$$
=\rho \sin ^{2} \phi \quad(\therefore f \rightarrow 0 \text { as } \rho \rightarrow 0 \Rightarrow \text { fir cts at })
$$

Hence $\iiint_{D} f(x, y, z) d V=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1}(\underbrace{\rho \sin ^{2} \phi}_{\text {function }}) \cdot \underbrace{\rho^{2} \sin \phi d \rho d \phi d \theta}_{\text {volume element }}$

$$
=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \rho^{3} \sin ^{3} \phi d \rho d \phi d \theta
$$

$$
\begin{aligned}
& =\frac{\pi}{2}\left(\int_{0}^{\frac{\pi}{2}} \sin ^{3} \phi d \phi\right)\left(\int_{0}^{1} \rho^{3} d \rho\right) \\
& =\frac{\pi}{12}(\text { clock! }) \\
\operatorname{Vol}(D)=\frac{1}{8} \operatorname{Vol}(\text { unit ball }) & =\frac{1}{8} \cdot \frac{4 \pi}{3}=\frac{\pi}{6} \\
\Rightarrow \text { Average of } f \text { over } D & =\frac{1}{\operatorname{Vol}(D)} \iiint_{D} f(x, y, z) d V \\
& =\frac{1}{2}
\end{aligned}
$$

eg 26: (Improper integrals)
Let $f(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}}=\frac{1}{\rho^{2}}$

$$
g(x, y, z)=\frac{1}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3}}=\frac{1}{\rho^{3}}
$$

(both unbounded oo $\rho \rightarrow 0$)
over unit ball $B=\{(\rho, \theta, \phi)=0 \leqslant \rho \leqslant 1\}$
(i) Does $\lim _{\varepsilon \rightarrow 0} \iint_{B \backslash B_{\varepsilon}} f(x, y, z) d v$ exist?

$$
\text { where } B_{\varepsilon}=\{(\rho, \phi, \theta): 0 \leqslant \rho \leqslant \varepsilon\}
$$

(ii) Does $\lim _{\varepsilon \rightarrow 0} \iint_{B \backslash B_{\varepsilon}} g(x, y, z) d v$ exist?

Answer:
(i) $\lim _{\varepsilon \rightarrow 0} \iiint_{B \backslash B_{\varepsilon}} f(x, y, z) d V=\lim _{\varepsilon \rightarrow 0} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{\varepsilon}^{1} \frac{1}{\rho^{2}} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta$

$$
=\lim _{\varepsilon \rightarrow 0} 2 \pi\left(\int_{0}^{\pi} \sin \phi d \phi\right)\left(\int_{\varepsilon}^{1} d \rho\right)
$$

$$
=\lim _{\varepsilon \rightarrow 0} 4 \pi(1-\varepsilon)=4 \pi
$$

(ii)

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \iiint_{B \backslash B_{\varepsilon}} g(x, y, z) d V & =\lim _{\varepsilon \rightarrow 0} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{\varepsilon}^{1} \frac{1}{\rho^{3}} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\lim _{\varepsilon \rightarrow 0} 4 \pi\left(\int_{\varepsilon}^{1} \frac{d \rho}{\rho}\right)=\lim _{\varepsilon \rightarrow 0} 4 \pi \ln \frac{1}{\varepsilon}
\end{aligned}
$$

Doesnit exist
Terminology: $f=\frac{1}{\rho^{2}}$ is said to be "integrable" over B
(in the sense of improper integral)

- $g=\frac{1}{\rho^{3}}$ is said to be "non integrable" our B

Question = determine all $\beta>0$ such that

$$
f=\frac{1}{\rho \beta} \text { is "integrable" over } B \subset \mathbb{R}^{3}
$$

Smislar question in \mathbb{R}^{2} : determine all $\beta>0$ such that

$$
f=\frac{1}{r \beta} \text { is "integrable" in }\left\{r \leqslant 1 \xi \subset \mathbb{R}^{2}\right.
$$

(even in $\left.\mathbb{R}^{\prime}: f=\frac{1}{|x|^{\beta}}\right)$

Application of Multiple Integrals (Thomas' Calculus \$15.6)
In applications, we often use the following:
In 2-dim: Let R be a region in \mathbb{R}^{2} with density $\delta(x, y)$

- First moment about y-axis: $M_{y}=\iint_{R} x \delta(x, y) d A$
- First moment about x-axio: $M_{x}=\iint_{R} y \delta(x, y) d A$
- Mass: $M=\iint_{R} \delta(x, y) d A$
- Center of Mass (Centroid)

$$
(\bar{x}, \bar{y})=\left(\frac{M y}{M}, \frac{M x}{M}\right)
$$

In 3-diur, D solid region in \mathbb{R}^{3} with density $\delta(x, y, z)$

- First moment:
- about $y z$-plane, $\quad M_{y z}=\iiint_{D} x \delta(x, y, z) d V$
- about $x z$-plane,

$$
M_{x z}=\iiint_{D} y \delta(x, y, z) d v
$$

- about xy-plare,

$$
M_{x y}=\iiint_{D} z \delta(x, y, z) d v
$$

- Mass : $M=\iint_{D} \delta(x, y, z) d V$
- Center of Mass (Centroid) $(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{y z}}{M}, \frac{M_{x z}}{M}, \frac{M_{x y}}{M}\right)$

In 2 -dim, $R=$ region in \mathbb{R}^{2} with density $\delta(x, y)$
Moments of metic

- about x-axis $=I_{x}=\iint_{R} y^{2} \delta(x, y) d A$
- about y-axis $: I_{y}=\iint_{R} x^{2} \delta(x, y) d A$
- about lime L: $I_{L}=\iint_{R} r(x, y)^{2} \delta(x, y) d A$
where $r(x, y)=\operatorname{distance}$ between (x, y) and L.
- about the origin: $I_{0}=\iint_{R}\left(x^{2}+y^{2}\right) \delta(x, y) d A$

In 3-dim, $D=$ solid region in \mathbb{R}^{3} with density $\delta(x, y, z)$
Moments of Inertia

- around x-axis $=I_{x}=\iiint_{D}\left(y^{2}+z^{2}\right) \delta(x, y, z) d V$
- around y-axis $=I_{y}=\iiint_{D}\left(x^{2}+z^{2}\right) \delta(x, y, z) d V$
- around z-axis: $I_{z}=\iiint_{D}\left(x^{2}+y^{2}\right) \delta(x, y, z) d v$
around Line $L: I_{L}=\iiint_{D} r(x, y, z)^{2} \delta(x, y, z) d v$
where $r(x, y, z)=$ distance between (x, y, z) and L.
eg 27: Consider $D: r^{2} \leqslant x^{2}+y^{2}+z^{2} \leqslant R^{2}$

$$
(0<r<R)
$$

with density $\delta(x, y, z) \equiv \delta$ (constant density function, ie. uifam mass)

Express $I_{z} \bar{m}$ term of $m=$ Mass of D, r and R.
Sole: $I_{z}=\iiint_{D}\left(x^{2}+y^{2}\right) \delta(x, y, z) d V$

$$
\begin{aligned}
& =\delta \iiint_{D}\left(x^{2}+y^{2}\right) d V=\delta \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{r}^{R}(\rho \sin \phi)^{2} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\delta \cdot 2 \pi\left(\int_{0}^{\pi} \sin ^{3} \phi d \phi\right)\left(\int_{r}^{R} \rho^{4} d \rho\right) \\
& =\frac{8 \pi}{15}\left(R^{5}-r^{5}\right) \delta \quad \quad \text { check!) }
\end{aligned}
$$

$$
\begin{aligned}
& m=m_{\text {ass }}=\iiint_{D} \delta(x, y, z) d V=\delta \iiint_{D} d V=\delta V_{o l}(D) \\
&=\delta \cdot \frac{4 \pi}{3}\left(R^{3}-r^{3}\right) \\
& \therefore \quad I_{z}=\frac{2 m}{5} \frac{R^{5}-r^{5}}{R^{3}-\gamma^{3}}
\end{aligned}
$$

observation: Two limiting cases:
(i) $r \rightarrow 0$, i.e. the whole solid ball $I_{z}=\frac{2 m}{5} R^{2}$
(ii) $r \rightarrow R$, ie, a (hollow) sphere made of "infinitesimally" thin sheet:

$$
\begin{aligned}
& I_{z}=\lim _{r \rightarrow R} \frac{2 m}{5} \cdot \frac{R^{5}-r^{5}}{R^{3}-r^{3}}=\frac{2 m}{5} \cdot \frac{5 R^{4}}{3 R^{2}} \quad \text { (check!) } \\
& \therefore \quad I_{z}=\frac{2 m}{3} R^{2}
\end{aligned}
$$

Moment of inertia of the hollow sphere
\rightarrow moment of mertia of the solid ball
(assuring the same (unifam) mass m)

