MATH 2020A Advanced Calculus II 2023-24 Term 1 Suggested Solution of Homework 9

Refer to Textbook: Thomas' Calculus, Early Transcendentals, $\underline{\underline{13 \text { th Edition }}}$

Exercises 16.5

4. Find a parametrization of the surface.

Cone frustum The first-octant portion of the cone $z=2 \sqrt{x^{2}+y^{2}}$ between the planes $z=2$ and $z=4$.

Solution. In cylindrical coordinates, let $x=r \cos \theta, y=r \sin \theta, z=2 \sqrt{x^{2}+y^{2}} \Longrightarrow z=$ $2 r$. For $2 \leq z \leq 4$, we have $1 \leq r \leq 2$. Hence, a parametrization is

$$
\mathbf{r}(r, \theta)=(r \cos \theta) \mathbf{i}+(r \sin \theta) \mathbf{j}+2 r \mathbf{k}, \quad 1 \leq r \leq 2,0 \leq \theta \leq 2 \pi .
$$

10. Find a parametrization of the surface.

Parabolic cylinder between planes The surface cut from the parabolic cylinder $y=x^{2}$ by the planes $z=0, z=3$, and $y=2$.

Solution. A parametrization is

$$
\mathbf{r}(x, z)=x \mathbf{i}+x^{2} \mathbf{j}+z \mathbf{k}, \quad-\sqrt{2} \leq x \leq \sqrt{2}, 0 \leq z \leq 3
$$

19. Use a parametrization to express the area of the surface as a double integral. Then evaluate the integral.
Cone frustum The first-octant portion of the cone $z=2 \sqrt{x^{2}+y^{2}}$ between the planes $z=2$ and $z=6$.

Solution. A parametrization is

$$
\mathbf{r}(r, \theta)=(r \cos \theta) \mathbf{i}+(r \sin \theta) \mathbf{j}+2 r \mathbf{k}, \quad 1 \leq r \leq 3,0 \leq \theta \leq 2 \pi
$$

Then $\mathbf{r}_{r}=(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}+2 \mathbf{k}$ and $\mathbf{r}_{\theta}=(-r \sin \theta) \mathbf{i}+(r \cos \theta) \mathbf{j}$, and thus

$$
\begin{gathered}
\mathbf{r}_{r} \times \mathbf{r}_{\theta}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos \theta & \sin \theta & 2 \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right|=(-2 r \cos \theta) \mathbf{i}-(2 r \sin \theta) \mathbf{j}+r \mathbf{k}, \\
\left|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right|=\sqrt{4 r^{2} \cos ^{2} \theta+4 r^{2} \sin ^{2} \theta+r^{2}}=r \sqrt{5} .
\end{gathered}
$$

Hence,

$$
\text { Surface area }=\int_{0}^{2 \pi} \int_{1}^{3} r \sqrt{5} d r d \theta .=8 \pi \sqrt{5}
$$

22. Use a parametrization to express the area of the surface as a double integral. Then evaluate the integral.
Circular cylinder band The portion of the cylinder $x^{2}+z^{2}=10$ between the planes $y=-1$ and $y=1$.

Solution. A parametrization is

$$
\mathbf{r}(v, y)=(\sqrt{10} \cos v) \mathbf{i}+y \mathbf{j}+(\sqrt{10} \sin v) \mathbf{k}, \quad 0 \leq v \leq 2 \pi,-1 \leq y \leq 1
$$

Then $\mathbf{r}_{v}=(-\sqrt{10} \sin v) \mathbf{i}+(\sqrt{10} \cos v) \mathbf{k}$ and $\mathbf{r}_{y}=\mathbf{j}$, and thus

$$
\begin{gathered}
\mathbf{r}_{v} \times \mathbf{r}_{y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sqrt{10} \sin v & 0 & \sqrt{10} \cos v \\
0 & 1 & 0
\end{array}\right|=(-\sqrt{10} \cos v) \mathbf{i}+(-\sqrt{10} \sin v) \mathbf{k}, \\
\left|\mathbf{r}_{v} \times \mathbf{r}_{y}\right|=\sqrt{10} .
\end{gathered}
$$

Hence,

$$
\text { Surface area }=\int_{0}^{2 \pi} \int_{-1}^{1} \sqrt{10} d y d v=4 \pi \sqrt{10}
$$

24. Use a parametrization to express the area of the surface as a double integral. Then evaluate the integral.
Parabolic band The portion of the paraboloid $z=x^{2}+y^{2}$ between the planes $z=1$ and $z=4$.

Solution. A parametrization is

$$
\mathbf{r}(r, \theta)=(r \cos \theta) \mathbf{i}+(r \sin \theta) \mathbf{j}+r^{2} \mathbf{k}, \quad 1 \leq r \leq 2,0 \leq \theta \leq 2 \pi
$$

Then $\mathbf{r}_{r}=(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}+2 r \mathbf{k}$ and $\mathbf{r}_{\theta}=(-r \sin \theta) \mathbf{i}+(r \cos \theta) \mathbf{j}$, and thus

$$
\begin{gathered}
\mathbf{r}_{r} \times \mathbf{r}_{\theta}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos \theta & \sin \theta & 2 r \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right|=\left(-2 r^{2} \cos \theta\right) \mathbf{i}-\left(2 r^{2} \sin \theta\right) \mathbf{j}+r \mathbf{k} \\
\left|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right|=\sqrt{4 r^{4} \cos ^{2} \theta+4 r^{4} \sin ^{2} \theta+r^{2}}=r \sqrt{4 r^{2}+1}
\end{gathered}
$$

Hence,

$$
\text { Surface area }=\int_{0}^{2 \pi} \int_{1}^{2} r \sqrt{4 r^{2}+1} \cdot d r d \theta \cdot=2 \pi \cdot\left[\frac{1}{12}\left(4 r^{2}+1\right)^{3 / 2}\right]_{1}^{2}=\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5})
$$

38. Find the area of the band cut from the paraboloid $x^{2}+y^{2}-z=0$ by the planes $z=2$ and $z=6$.

Solution. The band is given by the graph

$$
z=f(x, y):=x^{2}+y^{2}, \quad(x, y) \in \Omega:=\left\{(x, y): 2 \leq x^{2}+y^{2} \leq 6\right\} .
$$

Then $\nabla f=2 x \mathbf{i}+2 y \mathbf{j}$ and $|\nabla f|^{2}=4 x^{2}+4 y^{2}$. Hence,

$$
\begin{aligned}
\text { Surface area } & =\iint_{\Omega} \sqrt{1+|\nabla f|^{2}} d A=\int_{\Omega} \sqrt{1+4 x^{2}+4 y^{2}} d x d y \\
& =\int_{0}^{2 \pi} \int_{\sqrt{2}}^{\sqrt{6}} \sqrt{1+4 r^{2}} r d r d \theta=2 \pi\left[\frac{1}{12}\left(4 r^{2}+1\right)^{3 / 2}\right]_{\sqrt{2}}^{\sqrt{6}}=\frac{49 \pi}{3} .
\end{aligned}
$$

47. Find the area of the surface $x^{2}-2 \ln x+\sqrt{15} y-z=0$ above the square $R: 1 \leq x \leq 2$, $0 \leq y \leq 1$, in the $x y$-plane.

Solution. The surface is given by the graph

$$
z=f(x, y):=x^{2}-2 \ln x+\sqrt{15} y, \quad(x, y) \in R .
$$

Then $\nabla f=\left(2 x-\frac{2}{x}\right) \mathbf{i}+\sqrt{15} \mathbf{j}$ and

$$
1+|\nabla f|^{2}=1+\left(2 x-\frac{2}{x}\right)^{2}+15=\left(2 x+\frac{2}{x}\right)^{2}
$$

Hence,

$$
\begin{aligned}
\text { Surface area } & =\iint_{R} \sqrt{1+|\nabla f|^{2}} d A=\int_{R} \sqrt{\left.2 x+\frac{2}{x}\right)^{2}} d x d y \\
& =\int_{0}^{1} \int_{1}^{2}\left(2 x+\frac{2}{x}\right) d x d y=3+2 \ln 2 .
\end{aligned}
$$

Exercises 16.6

13. Integrate $G(x, y, z)=x+y+z$ over the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.

Solution. The surface is given by the graph

$$
z=f(x, y):=2-2 x-2 y, \quad(x, y) \in \Omega:=\{(x, y): x, y \geq 0, x+y \leq 1\} .
$$

Then $\nabla f=-2 \mathbf{i}-2 \mathbf{j}$ and

$$
\sqrt{1+|\nabla f|^{2}}=\sqrt{1+2^{2}+2^{2}}=3
$$

Hence,

$$
\begin{aligned}
\iint_{S} G d \sigma & =\int_{\Omega} G(x, y, f(x, y)) \sqrt{1+|\nabla f|^{2}} d x d y \\
& =\int_{0}^{1} \int_{0}^{1-x}(x+y+(2-2 x-2 y) \cdot 3 d y d x \\
& =3 \int_{0}^{1} \int_{0}^{1-x}(2-x-y) d y d x=2
\end{aligned}
$$

19. Use a parametrization to find the flux $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ across the surface in the specified direction.
Parabolic cylinder $\quad \mathbf{F}=z^{2} \mathbf{i}+x \mathbf{j}-3 z \mathbf{k}$ outward (normal away from the x-axis) through the surface cut from the parabolic cylinder $z=4-y^{2}$ by the planes $x=0, x=1$, and $z=0$.

Solution. A parametrization is

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(4-y^{2}\right) \mathbf{k}, \quad(x, y) \in \Omega:=\{(x, y): 0 \leq x \leq 1,-2 \leq y \leq 2\} .
$$

Then $\mathbf{r}_{x}=\mathbf{i}$ and $\mathbf{r}_{y}=\mathbf{j}-2 y \mathbf{k}$, and thus

$$
\begin{gathered}
\mathbf{r}_{x} \times \mathbf{r}_{y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 0 \\
0 & 1 & -2 y
\end{array}\right|=2 y \mathbf{j}+\mathbf{k}, \\
\mathbf{F}(\mathbf{r}(x, y)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right)=\left(\left(4-y^{2}\right)^{2} \mathbf{i}+x \mathbf{j}-3\left(4-y^{2}\right) \mathbf{k}\right) \cdot(2 y \mathbf{j}+\mathbf{k})=2 x y-3\left(4-y^{2}\right) .
\end{gathered}
$$

Hence,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma & =\iint_{\Omega} \mathbf{F}(\mathbf{r}(x, y)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) d x d y \\
& =\int_{0}^{1} \int_{-2}^{2}\left[2 x y-3\left(4-y^{2}\right)\right] d y d x=-32
\end{aligned}
$$

23. Use a parametrization to find the flux $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ across the surface in the specified direction.
Plane $\quad \mathbf{F}=2 x y \mathbf{i}+2 y z \mathbf{j}+2 x z \mathbf{k}$ upward across the portion of the plane $x+y+z=2 a$ that lies above the square $0 \leq x \leq a, 0 \leq y \leq a$, in the $x y$-plane.

Solution. A parametrization is

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+(2 a-x-y) \mathbf{k}, \quad(x, y) \in \Omega:=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq a\}
$$

Then $\mathbf{r}_{x}=\mathbf{i}-\mathbf{k}$ and $\mathbf{r}_{y}=\mathbf{j}-\mathbf{k}$, and thus

$$
\begin{aligned}
& \mathbf{r}_{x} \times \mathbf{r}_{y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right|=\mathbf{i}+\mathbf{j}+\mathbf{k}, \\
\mathbf{F}(\mathbf{r}(x, y)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) & =(2 x y \mathbf{i}+2 y(2 a-x-y) \mathbf{j}+2 x(2 a-x-y) \mathbf{k}) \cdot(\mathbf{i}+\mathbf{j}+\mathbf{k}) \\
& =4 a y-2 y^{2}+4 a x-2 x^{2}-2 x y .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma & =\iint_{\Omega} \mathbf{F}(\mathbf{r}(x, y)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) d x d y \\
& =\int_{0}^{a} \int_{0}^{a}\left(4 a y-2 y^{2}+4 a x-2 x^{2}-2 x y\right) d y d x \\
& =\frac{13 a^{4}}{6}
\end{aligned}
$$

