MATH 2020A Advanced Calculus II 2023-24 Term 1 Suggested Solution of Homework 7

Refer to Textbook: Thomas' Calculus, Early Transcendentals, 13 th Edition

Exercises 16.2

45. Work and area Suppose that $f(t)$ is differentiable and positive for $a \leq t \leq b$. Let C be the path $\mathbf{r}(t)=t \mathbf{i}+f(t) \mathbf{j}, a \leq t \leq b$, and $\mathbf{F}=y \mathbf{i}$. Is there an relation between the value of the work integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

and the area of the region bounded by the t-axis, the graph of f, and the lines $t=a$ and $t=b$? Give reasons for your answer.

Solution. Yes. The work and area have the same numerical value because

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C} y \mathbf{i} d \mathbf{r} \\
& =\int_{a}^{b} f(t) \mathbf{i} \cdot\left(\mathbf{i}+f^{\prime}(t) \mathbf{j}\right) d t \\
& =\int_{a}^{b} f(t) d t,
\end{aligned}
$$

which is the area under the curve because $f(t)>0$.
46. Work done by a radial force with constant magnitude A particle moves along the smooth curve $y=f(x)$ from $(a, f(a))$ to $(b, f(b))$. The force moving the particle has constant magnitude k and always points away from the origin. Show that the work done by the force is

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=k\left[\left(b^{2}+(f(b))^{2}\right)^{1 / 2}-\left(a^{2}+(f(a))^{2}\right)^{1 / 2}\right] .
$$

Solution. $C: \mathbf{r}=x \mathbf{i}+y \mathbf{j}=x \mathbf{i}+f(x) \mathbf{j} \Longrightarrow \frac{d \mathbf{r}}{d x}=\mathbf{i}+f^{\prime}(x) \mathbf{j}$; For a force with constant magnitude k and points away from the origin, $\mathbf{F}=\frac{k}{\sqrt{x^{2}+y^{2}}}(x \mathbf{i}+y \mathbf{j})$, and so

$$
\mathbf{F} \cdot \frac{d \mathbf{r}}{d x}=\frac{k x}{\sqrt{x^{2}+[f(x)]^{2}}}+\frac{k f(x) f^{\prime}(x)}{\sqrt{x^{2}+[f(x)]^{2}}}=k \frac{d}{d x} \sqrt{x^{2}+[f(x)]^{2}} \quad \text { by the chain rule. }
$$

Therefore,

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s & =\int_{C} \mathbf{F} \cdot \frac{d \mathbf{r}}{d x} d x=\int_{a}^{b} k \frac{d}{d x} \sqrt{x^{2}+[f(x)]^{2}} d x \\
& =k\left[\sqrt{x^{2}+[f(x)]^{2}}\right]_{a}^{b} \\
& =k\left[\left(b^{2}+(f(b))^{2}\right)^{1 / 2}-\left(a^{2}+(f(a))^{2}\right)^{1 / 2}\right] .
\end{aligned}
$$

Exercises 16.3

8. Find a potential function f for the field $\mathbf{F}=(y+z) \mathbf{i}+(x+z) \mathbf{j}+(x+y) \mathbf{k}$.

Solution. Suppose f is a potential function, that is $\nabla f=\mathbf{F}$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=y+z \Longrightarrow f(x, y, z)=(y+z) x+g(y, z) \\
\frac{\partial f}{\partial y}=x+\frac{\partial g}{\partial y}=x+z \Longrightarrow \frac{\partial g}{\partial y}=z \Longrightarrow g(y, z)=z y+h(z) \\
\frac{\partial f}{\partial z}=x+y+h^{\prime}(z)=x+y \Longrightarrow h^{\prime}(z)=0 \Longrightarrow h(z)=C
\end{gathered}
$$

Hence, a potential function for \mathbf{F} is $f(x, y, z)=(y+z) x+z y+C$, where C is a constant.
12. Find a potential function f for the field

$$
\mathbf{F}=\frac{y}{1+x^{2} y^{2}} \mathbf{i}+\left(\frac{x}{1+x^{2} y^{2}}+\frac{z}{\sqrt{1-y^{2} z^{2}}}\right) \mathbf{j}+\left(\frac{y}{\sqrt{1-y^{2} z^{2}}}+\frac{1}{z}\right) \mathbf{k} .
$$

Solution. Suppose f is a potential function, that is $\nabla f=\mathbf{F}$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{y}{1+x^{2} y^{2}} \Longrightarrow f(x, y, z)=\tan ^{-1}(x y)+g(y, z) \\
\frac{\partial f}{\partial y}=\frac{x}{1+x^{2} y^{2}}+\frac{\partial g}{\partial y}=\frac{x}{1+x^{2} y^{2}}+\frac{z}{\sqrt{1-y^{2} z^{2}}} \\
\Longrightarrow \frac{\partial g}{\partial y}=\frac{z}{\sqrt{1-y^{2} z^{2}}} \\
\Longrightarrow g(y, z)=\sin ^{-1}(y z)+h(z) \\
\frac{\partial f}{\partial z}=\frac{y}{\sqrt{1-y^{2} z^{2}}}+h^{\prime}(z)=\frac{y}{\sqrt{1-y^{2} z^{2}}}+\frac{1}{z} \Longrightarrow h^{\prime}(z)=\frac{1}{z} \Longrightarrow h(z)=\ln |z|+C .
\end{gathered}
$$

Hence, a potential function for \mathbf{F} is $f(x, y, z)=\tan ^{-1}(x y)+\sin ^{-1}(y z)+\ln |z|+C$, where C is a constant.
17. Show that the differential form in the integral is exact. Then evaluate the integral.

$$
\int_{(1,0,0)}^{(0,1,1)} \sin y \cos x d x+\cos y \sin x d y+d z
$$

Solution. Denote the differential from as $M d x+N d y+P d z$. Clearly, it is C^{1} on \mathbb{R}^{3}, which is connected and simply connected. It is exact because

$$
\frac{\partial P}{\partial y}=0=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=0=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x}=\cos y \cos x=\frac{\partial M}{\partial y} .
$$

Suppose $\nabla f=\sin y \cos x \mathbf{i}+\cos y \sin x \mathbf{j}+\mathbf{k}$. Then

$$
\frac{\partial f}{\partial x}=\sin y \cos x \Longrightarrow f(x, y, z)=\sin y \sin x+g(y, z)
$$

$$
\begin{gathered}
\frac{\partial f}{\partial y}=\cos y \sin x+\frac{\partial g}{\partial y}=\cos y \sin x \Longrightarrow \frac{\partial g}{\partial y}=0 \Longrightarrow g(y, z)=h(z) ; \\
\frac{\partial f}{\partial z}=h^{\prime}(z)=1 \Longrightarrow h(z)=z+C
\end{gathered}
$$

Hence, $f(x, y, z)=\sin y \sin x+z+C$, where C is a constant. Therefore,

$$
\int_{(1,0,0)}^{(0,1,1)} \sin y \cos x d x+\cos y \sin x d y+d z=f(0,1,1)-f(1,0,0)=1-0=1
$$

20. Find a potential function for the field and evaluate the integral as in Example 6.

$$
\int_{(1,2,1)}^{(2,1,1)}(2 x \ln y-y z) d x+\left(\frac{x^{2}}{y}-x z\right) d y-x y d z .
$$

Solution. Denote the differential from as $M d x+N d y+P d z$. Clearly, it is C^{1} on $\left\{(x, y, z) \in \mathbb{R}^{3}: y>0\right\}$, which is connected and simply connected. It is exact because

$$
\frac{\partial P}{\partial y}=-x=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=-y=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x}=\frac{2 x}{y}-z=\frac{\partial M}{\partial y} .
$$

Suppose $\nabla f=(2 x \ln y-y z) \mathbf{i}+\left(\frac{x^{2}}{y}-x z\right) \mathbf{j}-x y \mathbf{k}$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x \ln y-y z \Longrightarrow f(x, y, z)=x^{2} \ln y-x y z+g(y, z) ; \\
\frac{\partial f}{\partial y}=\frac{x^{2}}{y}-x z+\frac{\partial g}{\partial y}=\frac{x^{2}}{y}-x z \Longrightarrow \frac{\partial g}{\partial y}=0 \Longrightarrow g(y, z)=h(z) ; \\
\frac{\partial f}{\partial z}=-x y+h^{\prime}(z)=-x y \Longrightarrow h^{\prime}(z)=0 \Longrightarrow h(z)=C .
\end{gathered}
$$

Hence, $f(x, y, z)=x^{2} \ln y-x y z+C$, where C is a constant. Therefore,

$$
\begin{aligned}
\int_{(1,2,1)}^{(2,1,1)}(2 x \ln y-y z) d x+\left(\frac{x^{2}}{y}-x z\right) d y-x y d z & =f(2,1,1)-f(1,2,1) \\
& =(-2)-(\ln 2-2)=-\ln 2
\end{aligned}
$$

27. Find a potential function for \mathbf{F}.

$$
\mathbf{F}=\frac{2 x}{y} \mathbf{i}+\left(\frac{1-x^{2}}{y^{2}}\right) \mathbf{j}, \quad\{(x, y): y>0\}
$$

Solution. Note that \mathbf{F} is a C^{1} vector field on $\{(x, y): y>0\}$, which is connected and simply connected. Denote $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$. It is conservative because

$$
\frac{\partial N}{\partial x}=-\frac{2 x}{y^{2}}=\frac{\partial M}{\partial y}
$$

So there is a potential function f such that $\nabla f=\mathbf{F}$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{2 x}{y} \Longrightarrow f(x, y)=\frac{x^{2}}{y}+g(y) ; \\
\frac{\partial f}{\partial y}=-\frac{x^{2}}{y^{2}}+g^{\prime}(y)=\frac{1-x^{2}}{y^{2}} \Longrightarrow g^{\prime}(y)=\frac{1}{y^{2}} \Longrightarrow g(y)=-\frac{1}{y}+C .
\end{gathered}
$$

Hence, a potential function for \mathbf{F} is $f(x, y)=\frac{x^{2}}{y}-\frac{1}{y}+C$, where C is a constant.
29. Work along different paths Find the work done by $\mathbf{F}=\left(x^{2}+y\right) \mathbf{i}+\left(y^{2}+x\right) \mathbf{j}+z e^{z} \mathbf{k}$ over the following paths from $(1,0,0)$ to $(1,0,1)$.
(a) The line segment $x=1, y=0,0 \leq z \leq 1$.
(b) The helix $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+(t / 2 \pi) \mathbf{k}, 0 \leq t \leq 2 \pi$.
(c) The x-axis from $(1,0,0)$ to $(0,0,0)$ followed by the parabola $z=x^{2}, y=0$ from $(0,0,0)$ to $(1,0,1)$.

Solution. Note that \mathbf{F} is a C^{1} vector field on \mathbb{R}^{3}, which is connected and simply connected. Denote $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$. It is conservative because

$$
\frac{\partial P}{\partial y}=0=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=0=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial x}=1=\frac{\partial M}{\partial y} .
$$

So there is a potential function f such that $\nabla f=\mathbf{F}$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=x^{2}+y \Longrightarrow f(x, y, z)=\frac{1}{3} x^{3}+x y+g(y, z) \\
\frac{\partial f}{\partial y}=x+\frac{\partial g}{\partial y}=y^{2}+x \Longrightarrow \frac{\partial g}{\partial y}=y^{2} \Longrightarrow g(y, z)=\frac{1}{3} y^{3}+h(z) \\
\frac{\partial f}{\partial z}=h^{\prime}(z)=z e^{z} \Longrightarrow h(z)=z e^{z}-e^{z}+C .
\end{gathered}
$$

Hence, a potential function for \mathbf{F} is $f(x, y, z)=\frac{1}{3} x^{3}+x y+\frac{1}{3} y^{3}+z e^{z}-e^{z}+C$, where C is a constant.
Since \mathbf{F} is conservative, the work by \mathbf{F} over each of the path is the same, and is given by

$$
\text { Work }=\int_{A}^{B} \mathbf{F} \cdot d \mathbf{r}=\left[\frac{1}{3} x^{3}+x y+\frac{1}{3} y^{3}+z e^{z}-e^{z}\right]_{(1,0,0)}^{(1,0,1)}=\frac{1}{3}-\left(\frac{1}{3}-1\right)=1 .
$$

33. (a) Exact differential form How are the constants a, b, and c related if the following differential form is exact?

$$
\left(a y^{2}+2 c z x\right) d x+y(b x+c z) d y+\left(a y^{2}+c x^{2}\right) d z
$$

(b) Gradient field For what values of b and c will

$$
\mathbf{F}=\left(y^{2}+2 c z x\right) \mathbf{i}+y(b x+c z) \mathbf{j}+\left(y^{2}+c x^{2}\right) \mathbf{k}
$$

be a gradient field?

Solution. (a) Denote the differential from as $M d x+N d y+P d z$. If it is exact, then

$$
\begin{aligned}
& \frac{\partial P}{\partial y}=\frac{\partial N}{\partial z} \Longrightarrow 2 a y=c y \\
& \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x} \Longrightarrow 2 c x=2 c x \\
& \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} \Longrightarrow b y=2 a y
\end{aligned}
$$

So $b=c=2 a$.
(b) Note that \mathbf{F} is a gradient field if and only if the differential form in (a) with $a=1$ is exact. Since \mathbf{F} is a C^{1} vector field on \mathbb{R}^{3}, which is connected and simply connected, it is a gradient field when $b=c=2$.

38. Gravitational field

(a) Find a potential function for the gravitational field

$$
\mathbf{F}=-G m M \frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

(G, m, and M are constants).
(b) Let P_{1} and P_{2} be points at distance s_{1} and s_{2} from the origin. Show that the work done by the gravitational field in part (a) in moving a particle from P_{1} to P_{2} is

$$
G m M\left(\frac{1}{s_{1}}-\frac{1}{s_{2}}\right) .
$$

Solution. (a) Clearly $\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ is a C^{1} vector field on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$, which is connected and simply connected. Denote $M \mathbf{i}+N \mathbf{j}+P \mathbf{k}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$. It is conservative because

$$
\begin{aligned}
\frac{\partial P}{\partial y} & =\frac{-3 y z}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=\frac{\partial N}{\partial z} \\
\frac{\partial M}{\partial z} & =\frac{-3 z x}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=\frac{\partial P}{\partial x} \\
\frac{\partial N}{\partial x} & =\frac{-3 x y}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=\frac{\partial M}{\partial y} .
\end{aligned}
$$

So there is a potential function f such that $\nabla f=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$. Then

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \Longrightarrow f(x, y, z)=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}+g(y, z) ; \\
\frac{\partial f}{\partial y}=\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{\partial g}{\partial y}=\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \Longrightarrow \frac{\partial g}{\partial y}=0 \Longrightarrow g(y, z)=h(z) ; \\
\frac{\partial f}{\partial z}=\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+h^{\prime}(z)=\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \Longrightarrow h^{\prime}(z)=0 \Longrightarrow h(z)=C .
\end{gathered}
$$

Hence, $f(x, y, z)=-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}+C$, where C is a constant.
Therefore, a potential function for \mathbf{F} is $\frac{G m M}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}$.
(b) If s is the distance of (x, y, z) from the origin, then $s=\sqrt{x^{2}+y^{2}+z^{2}}$. The work done by the gravitational field \mathbf{F} is

$$
\int_{P_{1}}^{P_{2}} \mathbf{F} \cdot d \mathbf{r}=\left[\frac{G m M}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\right]_{P_{1}}^{P_{2}}=\frac{G m M}{s_{2}}-\frac{G m M}{s_{1}}=G m M\left(\frac{1}{s_{2}}-\frac{1}{s_{1}}\right) .
$$

