MATH 2020A Advanced Calculus II 2023-24 Term 1 Suggested Solution of Homework 4

Refer to Textbook: Thomas' Calculus, Early Transcendentals, 1 13th Edition

Exercises 15.6

2. Find moments of inertia Find the moments of inertia about the coordinate axes of a thin rectangular plate of constant density δ bounded by the lines $x=3$ and $y=3$ in the first quadrant.

Solution. $\mathbf{I}_{x}=\iint_{R} y^{2} \delta d A=\delta \int_{0}^{3} \int_{0}^{3} y^{2} d y d x=27 \delta ;$
$\mathbf{I}_{y}=\iint_{R} x^{2} \delta d A=\delta \int_{0}^{3} \int_{0}^{3} x^{2} d y d x=27 \delta$.
3. Finding a centroid Find the centroid of the region in the first quadrant bounded by the x-axis, the parabola $y^{2}=2 x$, and the line $x+y=4$.

Solution. $\mathbf{M}=\int_{0}^{2} \int_{y^{2} / 2}^{4-y} d x d y=\int_{0}^{2}\left(4-y-\frac{y^{2}}{2}\right) d y=\frac{14}{3}$;
$\mathbf{M}_{y}=\int_{0}^{2} \int_{y^{2} / 2}^{4-y} x d x d y=\frac{1}{2} \int_{0}^{2}\left(16-8 y+y^{2}-\frac{y^{4}}{4}\right) d y=\frac{128}{15} ;$
$\mathbf{M}_{x}=\int_{0}^{2} \int_{y^{2} / 2}^{4-y} y d x d y=\int_{0}^{2}\left(4 y-y^{2}-\frac{y^{3}}{2}\right) d y=\frac{10}{3}$.
Hence, the centroid is $(\bar{x}, \bar{y})=\left(\mathbf{M}_{y} / \mathbf{M}, \mathbf{M}_{x} / \mathbf{M}\right)=\left(\frac{64}{35}, \frac{5}{7}\right)$.

Exercises 15.8

3. (a) Solve the system

$$
u=3 x+2 y, \quad v=x+4 y
$$

for x and y in terms of u and v. Then find the value of the Jacobian $\partial(x, y) / \partial(u, v)$.
(b) Find the image under the transformation $u=3 x+2 y, v=x+4 y$ of the triangular region in the $x y$-plane bounded by the x-axis, the y-axis and the line $x+y=1$. Sketch the transformed region in the $u v$-plane.

Solution. (a) $x=\frac{1}{5}(2 u-v)$ and $y=\frac{1}{10}(-u+3 v)$. $\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}\frac{2}{5} & -\frac{1}{5} \\ -\frac{1}{10} & \frac{3}{10}\end{array}\right|=\frac{6}{50}-\frac{1}{50}=\frac{1}{10}$.
(b) $y=0 \Longrightarrow u=3 v ; \quad x=0 \Longrightarrow v=2 u$;
$x+y=1 \Longrightarrow \frac{1}{5}(2 u-v)+\frac{1}{10}(3 v-u)=1 \Longrightarrow 3 u+v=10$.

7. Use the transformation in Exercise 3 to evaluate the integral

$$
\iint_{R}\left(3 x^{2}+14 x y+8 y^{2}\right) d x d y
$$

for the region R in the first quadrant bounded by the lines $y=-(3 / 2) x+1, y=-(3 / 2) x+3$, $y=-(1 / 4) x$, and $y=-(1 / 4) x+1$.
Remark: The requirement for R lying in the first quadrant is a typo.
Solution. Let G be the image of R under the transformation $u=3 x+2 y, v=x+4 y$.

$x y$-equations for the boundary of R	corresponding $u v$-equations for the boundary of G
$y=-\frac{3}{2} x+1$	$u=2$
$y=-\frac{3}{2} x+3$	$u=6$
$y=-\frac{1}{4} x$	$v=0$
$y=-\frac{1}{4} x+1$	$v=4$

Hence,

$$
\begin{aligned}
\iint_{R}\left(3 x^{2}+14 x y+8 y^{2}\right) d x d y & =\iint_{R}(3 x+2 y)(x+4 y) d x d y \\
& =\iint_{G} u v\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \\
& =\frac{1}{10} \iint_{G} u v d u d v \\
& =\frac{1}{10} \int_{0}^{4} \int_{2}^{6} u v d u d v \\
& =\frac{1}{10}\left[\frac{u^{2}}{2}\right]_{2}^{6}\left[\frac{v^{2}}{2}\right]_{0}^{4}=\frac{64}{5} .
\end{aligned}
$$

12. The area of an ellipse The area $\pi a b$ of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ can be found by integrating the function $f(x, y)=1$ over the region bounded by the ellipse in the $x y$ plane. Evaluating the integral directly requires a trigonometric substitution. An easier way to evaluate the integral is to use the transformation $x=a u, y=b v$ and evaluate the transformed integral over the disk $G: u^{2}+v^{2} \leq 1$ in the $u v$-plane. Find the area this way.

Solution. $\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right|=a b$. Hence,

$$
\begin{aligned}
\text { Area } & =\iint_{R} d y d x=\iint_{G} a b d u d v=\int_{-1}^{1} \int_{-\sqrt{1-v^{2}}}^{\sqrt{1-v^{2}}} a b d u d v \\
& =2 a b \int_{-1}^{1} \sqrt{1-v^{2}} d v=2 a b\left[\frac{v}{2} \sqrt{1-v^{2}}+\frac{1}{2} \arcsin u\right]_{-1}^{1}=\pi a b .
\end{aligned}
$$

16. Use the transformation $x=u^{2}-v^{2}, y=2 u v$ to evaluate the integral

$$
\int_{0}^{1} \int_{0}^{2 \sqrt{1-x}} \sqrt{x^{2}+y^{2}} d y d x
$$

(Hint: Show that the image of the triangular region G with vertices $(0,0),(1,0),(1,1)$ in the $u v$-plane is the region of integration R in the $x y$-plane defined by the limits of integration.)

Solution. For $x=u^{2}-v^{2}, y=2 u v, \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}2 u & -2 v \\ 2 v & 2 u\end{array}\right|=4\left(u^{2}+v^{2}\right)$;

$$
\begin{aligned}
& v=0 \Longrightarrow y=0 \\
& u=v \Longrightarrow x=0 \\
& u=1 \Longrightarrow y^{2}=(2 v)^{2}=4\left(1-\left(1-v^{2}\right)\right)=4(1-x)
\end{aligned}
$$

Hence, the transformation maps the triangular region G with vertices $(0,0),(1,0),(1,1)$ onto the region R. Therefore,

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2 \sqrt{1-x}} \sqrt{x^{2}+y^{2}} d y d x & =\int_{0}^{1} \int_{0}^{u} \sqrt{\left(u^{2}-v^{2}\right)^{2}+(2 u v)^{2}} \cdot 4\left(u^{2}+v^{2}\right) d v d u \\
& =4 \int_{0}^{1} \int_{0}^{u}\left(u^{2}+v^{2}\right)^{2} d v d u=4 \int_{0}^{1}\left[u^{4} v+\frac{2}{3} u^{2} v^{3}+\frac{1}{5} v^{5}\right]_{0}^{u} d u \\
& =\frac{112}{15} \int_{0}^{1} u^{5} d u=\frac{56}{45}
\end{aligned}
$$

18. Volume of an ellipsoid Find the volume of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

(Hint: Let $x=a u, y=b v$, and $z=c w$. Then find the volume of an appropriate region in uvw-space.)

Solution. The transformation $x=a u, y=b v, z=c w$ satisfies

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right|=a b c
$$

and takes the ellipsoid region $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1$ in $x y z$-space into the spherical region $u^{2}+w^{2}+z^{2} \leq 1$ in $u v w$-space (which has volume $\frac{4}{3} \pi$.)
Hence, the volume of the ellipsoid is

$$
V=\iiint_{R} d x d y d z=\iiint_{G} a b c d u d v d w=\frac{4 \pi a b c}{3} .
$$

20 . Let D be the region in $x y z$-plane defined by the inequalities

$$
1 \leq x \leq 2, \quad 0 \leq x y \leq 2, \quad 0 \leq z \leq 1
$$

Evaluate

$$
\iiint_{D}\left(x^{2} y+3 x y z\right) d x d y d z
$$

by applying the transformation

$$
u=x, \quad v=x y, \quad w=3 z
$$

and integrating over an appropriate region G in $u v w$-space.
Solution. For the transformation $u=x, v=x y, w=3 z$, we have

$$
x=u, \quad y=\frac{v}{u}, \quad z=\frac{1}{3} w,
$$

and

$$
J(u, v, w)=\left|\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{v}{u^{2}} & \frac{1}{u} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right|=\frac{1}{3 u} .
$$

Hence

$$
\begin{aligned}
\iiint_{D}\left(x^{2} y+3 x y z\right) d x d y d z & =\iiint_{G}\left[u^{2}\left(\frac{v}{u}\right)+2 u\left(\frac{v}{u}\right)\left(\frac{w}{3}\right)\right]|J(u, v, w)| d u d v d w \\
& =\frac{1}{3} \int_{0}^{3} \int_{0}^{2} \int_{1}^{2}\left(v+\frac{v w}{u}\right) d u d v d w \\
& =\frac{1}{3} \int_{0}^{3} \int_{0}^{2}(v+v w \ln 2) d v d w \\
& =\frac{2}{3}\left(3+\frac{9}{2} \ln 2\right)=2+3 \ln 2
\end{aligned}
$$

27. Inverse transform The equations $x=g(u, v), y=h(u, v)$ in Figure 15.54 transform the region G in the $u v$-plane into the region R in the $x y$-plane. Since the substitution transformation is one-to-one with continuous first partial derivatives, it has an inverse transformation and there are equations $u=\alpha(x, y), v=\beta(x, y)$ with continuous first partial derivatives transforming R back to G. Moreover, the Jacobian determinants of the transformations are related reciprocally by

$$
\begin{equation*}
\frac{\partial(x, y)}{\partial(u, v)}=\left(\frac{\partial(u, v)}{\partial(x, y)}\right)^{-1} \tag{1}
\end{equation*}
$$

Equation (1) is proved in advanced calculus. Use it to find the area of the region R in the first quadrant of the $x y$-plane bounded by the lines $y=2 x, 2 y=x$, and the curves $x y=2,2 x y=1$ for $u=x y$ and $v=y / x$.

Solution. For $u=x y$ and $v=y / x$,

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
y & x \\
-\frac{y}{x^{2}} & \frac{1}{x}
\end{array}\right|=\frac{2 y}{x},
$$

and hence

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left(\frac{\partial(u, v)}{\partial(x, y)}\right)^{-1}=\frac{x}{2 y}=\frac{1}{2 v}
$$

Moreover, G is the region in the $u v$-plane bounded by the lines $u=\frac{1}{2}, u=2, v=\frac{1}{2}$ and $v=2$. Therefore,

$$
\text { Area of } \begin{aligned}
R & =\int_{R} d x d y=\int_{G}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \\
& =\int_{1 / 2}^{2} \int_{1 / 2}^{2} \frac{1}{2 v} d u d v \\
& =\frac{1}{2}\left(2-\frac{1}{2}\right)\left(\ln 2-\ln \frac{1}{2}\right)=\frac{3}{2} \ln 2
\end{aligned}
$$

28. (Continuation of Exercise 27.) For the region R described in Exercise 27, evaluate the integral $\iint_{R} y^{2} d A$.

Solution. By Exercise 27,

$$
\begin{aligned}
\iint_{R} y^{2} d A & =\int_{1 / 2}^{2} \int_{1 / 2}^{2}(u v) \cdot \frac{1}{2 v} d u d v \\
& =\frac{1}{2} \int_{1 / 2}^{2} \int_{1 / 2}^{2} u d u d v \\
& =\frac{1}{2}\left(2-\frac{1}{2}\right)\left(\frac{2^{2}}{2}-\frac{(1 / 2)^{2}}{2}\right)=\frac{45}{32} .
\end{aligned}
$$

