MATH 2020A Advanced Calculus II 2023-24 Term 1
 Suggested Solution of Homework 10

Refer to Textbook: Thomas' Calculus, Early Transcendentals, $\underline{\underline{\text { 13th Edition }}}$

Exercises 16.7

2. Use the surface integral in Stokes' Theorem to calculate the circulation of the field \mathbf{F} around the curve C in the indicated direction.
$\mathbf{F}=2 y \mathbf{i}+3 x \mathbf{j}-z^{2} \mathbf{k}$
C : The circle $x^{2}+y^{2}=9$ in the $x y$-plane, counterclockwise when viewed from above.
Solution. Note that

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 y & 3 x & -z^{2}
\end{array}\right|=0 \mathbf{i}-0 \mathbf{j}+(3-2) \mathbf{k}=\mathbf{k},
$$

and C is the boundary of the disk $S:=\left\{(x, y, 0): x^{2}+y^{2} \leq 9\right\}$ with upward unit normal $\mathbf{n}=\mathbf{k}$.
By Stokes' Theorem, the circulation of the field \mathbf{F} around the curve C is

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{\left\{x^{2}+y^{2} \leq 9\right\}} \mathbf{k} \cdot \mathbf{k} d x d y=9 \pi
$$

5. Use the surface integral in Stokes' Theorem to calculate the circulation of the field \mathbf{F} around the curve C in the indicated direction.
$\mathbf{F}=\left(y^{2}+z^{2}\right) \mathbf{i}+\left(x^{2}+y^{2}\right) \mathbf{j}+\left(x^{2}+y^{2}\right) \mathbf{k}$
C : The square bounded by the lines $x= \pm 1$ and $y= \pm 1$ in the $x y$-plane, counterclockwise when viewed from above.

Solution. Note that

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2}+z^{2} & x^{2}+y^{2} & x^{2}+y^{2}
\end{array}\right|=2 y \mathbf{i}-(2 x-2 z) \mathbf{j}+(2 x-2 y) \mathbf{k}
$$

and C is the boundary of the square $S:=\{(x, y, 0):|x| \leq 1,|y| \leq 1\}$ with upward unit normal $\mathbf{n}=\mathbf{k}$.
By Stokes' Theorem, the circulation of the field \mathbf{F} around the curve C is

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{\{|x|,|y| \leq 1\}}(2 x-2 y) d x d y=\int_{-1}^{1} \int_{-1}^{1}(2 x-2 y) d x d y=0 .
$$

8. Let \mathbf{n} be the outer unit normal (normal away from the origin) of the parabolic shell

$$
S: \quad 4 x^{2}+y+z^{2}=4, \quad y \geq 0
$$

and let

$$
\mathbf{F}=\left(-z+\frac{1}{2+x}\right) \mathbf{i}+\left(\tan ^{-1} y\right) \mathbf{j}+\left(x+\frac{1}{4+z}\right) \mathbf{k} .
$$

Find the value of

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma
$$

Solution. Note that

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-z+\frac{1}{2+x} & \tan ^{-1} y & x+\frac{1}{4+z}
\end{array}\right|=-2 \mathbf{j} .
$$

The surface S is a level surface given by

$$
g(x, y, z):=4 x^{2}+y+z^{2}=4, \quad y \geq 0 .
$$

Then $\nabla g=8 x \mathbf{i}+\mathbf{j}+2 z \mathbf{k}$ and $\frac{\partial g}{\partial y}=1 \neq 0$. Hence, an outer unit normal vector of S is $\mathbf{n}=\frac{\nabla g}{|\nabla g|}$, and

$$
d \sigma=\frac{|\nabla g|}{\left|\frac{\partial g}{\partial y}\right|} d x d z=|\nabla g| d x d z
$$

When $y=0,4 x^{2}+z^{2}=4$. So the projected region on the $x z$-plane is $\Omega:=\left\{4 x^{2}+z^{2} \leq 4\right\}$. Therefore,

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma & =\iint_{\Omega}(-2 \mathbf{j}) \cdot \frac{1}{|\nabla g|}(8 x \mathbf{i}+\mathbf{j}+2 z \mathbf{k})|\nabla g| d x d z \\
& =\iint_{\Omega}(-2) d x d z \\
& =-2 \operatorname{Area}(\Omega) \\
& =-2 \pi \cdot 1 \cdot 2=-4 \pi .
\end{aligned}
$$

Remark: One may also evaluate the integral by Stokes' Theorem but has to be careful about the orientation of the boundary curve. A parametrization for the curve so that it is oriented anti-clockwisely with respect to the outer normal of the surface is

$$
\mathbf{r}(\theta)=(\sin \theta, 0,2 \cos \theta), \quad 0 \leq \theta \leq 2 \pi .
$$

15. Use the surface integral in Stokes' Theorem to calculate the flux of the curl of the field \mathbf{F} across the surface S in the direction of the outward unit normal \mathbf{n}.
$\mathbf{F}=x^{2} y \mathbf{i}+2 y^{3} z \mathbf{j}+3 z \mathbf{k}$
$S: \quad \mathbf{r}(r, \theta)=(r \cos \theta) \mathbf{i}+(r \sin \theta) \mathbf{j}+r \mathbf{k}, \quad 0 \leq r \leq 1, \quad 0 \leq \theta \leq 2 \pi$.

Solution. Note that

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y & 2 y^{3} z & 3 z
\end{array}\right|=-2 y^{3} \mathbf{i}-0 \mathbf{j}-x^{2} \mathbf{k}=-2 y^{3} \mathbf{i}-x^{2} \mathbf{k},
$$

and

$$
\mathbf{r}_{r} \times \mathbf{r}_{\theta}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos \theta & \sin \theta & 1 \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right|=(-r \cos \theta) \mathbf{i}-(r \sin \theta) \mathbf{j}+r \mathbf{k} .
$$

Hence,
The flux of $\nabla \times \mathbf{F}$ across $S=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{R}(\nabla \times \mathbf{F}) \cdot\left(\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right) d r d \theta$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(2 r^{4} \sin ^{3} \theta \cos \theta-r^{3} \cos ^{2} \theta\right) d r d \theta \\
& =\int_{0}^{2 \pi}\left(-\frac{1}{4} \cos ^{2} \theta\right) d \theta \\
& =-\frac{\pi}{4}
\end{aligned}
$$

23. Let C be a simple closed curve in the plane $2 x+2 y+z=2$, oriented as shown here.

Show that

$$
\oint_{C} 2 y d x-3 z d y-x d z
$$

depends only on the area of the region enclosed by C and not on the position or shape of C

Solution. Let $\mathbf{F}=2 y \mathbf{i}+3 z \mathbf{j}-x \mathbf{k}$ and $g=2 x+2 y+z$. Then

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 y & 3 z & -x
\end{array}\right|=-3 \mathbf{i}+\mathbf{j}-2 \mathbf{k},
$$

and

$$
\mathbf{n}=\frac{\nabla g}{|\nabla g|}=\frac{1}{3}(2 \mathbf{i}+2 \mathbf{j}+\mathbf{k})
$$

is a normal vector of the plane such that C is oriented anti-clockwisely with respect to it. By Stokes' Theorem,

$$
\begin{aligned}
\oint_{C} 2 y d x-3 z d y-x d z & =\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} d \sigma \\
& =\iint_{S}-2 d \sigma \\
& =-2 \iint_{S} d \sigma
\end{aligned}
$$

where $\iint_{S} d \sigma$ is the area of the region S enclosed by C on the plane $2 x+2 y+z=2$.

Exercises 16.8

6. Use the Divergence Theorem to find the outward flux of \mathbf{F} across the boundary of the region D.

$$
\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}
$$

(a) Cube D : The cube cut from the first octant by the planes $x=1, y=1$, and $z=1$
(b) Cube D : The cube bounded by the planes $x= \pm 1, y= \pm 1$, and $z= \pm 1$
(c) Cylindrical can D : The region cut from the solid cylinder $x^{2}+y^{2} \leq 4$ by the planes $z=0$ and $z=1$.

Solution. Note that $\nabla \cdot \mathbf{F}=2 x+2 y+2 z$. By Divergence Theorem,

$$
\text { Flux }=\iint_{\partial D} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

(a) Flux $=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(2 x+2 y+2 z) d x d y d z=6 \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x d x d y d z=3$.
(b) Flux $=\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}(2 x+2 y+2 z) d x d y d z=6 \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} x d x d y d z=0$.
(c) Using cylindrical coordinates,

Flux $=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{2}(2 r \cos \theta+2 r \sin \theta+2 z) r d r d \theta d z=\int_{0}^{1} \int_{0}^{2 \pi}\left(\frac{16}{3} \cos \theta+\frac{16}{3} \sin \theta+\right.$ 4z) $d \theta d z=\int_{0}^{1} 8 \pi z d z=4 \pi$.
9. Use the Divergence Theorem to find the outward flux of \mathbf{F} across the boundary of the region D.
Portion of sphere $\quad \mathbf{F}=x^{2} \mathbf{i}-2 x y \mathbf{j}+3 x z \mathbf{k}$
D : The region cut from the first octant by the sphere $x^{2}+y^{2}+z^{2}=4$.

Solution. $\nabla \cdot \mathbf{F}=2 x-2 x+3 x=3 x$. By Divergence Theorem,

$$
\begin{aligned}
\text { Flux } & =\iiint_{D} \nabla \cdot \mathbf{F} d V=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}(3 \rho \sin \phi \cos \theta)\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} 12 \sin ^{2} \phi \cos \theta d \phi d \theta=\int_{0}^{\pi / 2} 3 \pi \cos \theta d \theta=3 \pi
\end{aligned}
$$

11. Use the Divergence Theorem to find the outward flux of \mathbf{F} across the boundary of the region D.
Wedge $\quad \mathbf{F}=2 x z \mathbf{i}-x y \mathbf{j}-z^{2} \mathbf{k}$
D : The wedge cut from the first octant by the plane $y+z=4$ and the elliptical cylinder $4 x^{2}+y^{2}=16$.

Solution. $\nabla \cdot \mathbf{F}=2 z-x-2 z=-x$. By Divergence Theorem,

$$
\begin{aligned}
\text { Flux } & =\iiint_{D} \nabla \cdot \mathbf{F} d V=\int_{0}^{2} \int_{0}^{\sqrt{16-4 x^{2}}} \int_{0}^{4-y}-x d z d y d x \\
& =\int_{0}^{2} \int_{0}^{\sqrt{16-4 x^{2}}}(x y-4 x) d y d x=\int_{0}^{2}\left[\frac{1}{2} x\left(16-4 x^{2}\right)-4 x \sqrt{16-4 x^{2}}\right] d x \\
& =\left[4 x^{2}-\frac{1}{2} x^{4}+\frac{1}{3}\left(16-4 x^{2}\right)^{3 / 2}\right]_{0}^{2}=-\frac{40}{3} .
\end{aligned}
$$

14. Use the Divergence Theorem to find the outward flux of \mathbf{F} across the boundary of the region D.
Thick sphere $\quad \mathbf{F}=(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) / \sqrt{x^{2}+y^{2}+z^{2}}$
D : The region $1 \leq x^{2}+y^{2}+z^{2} \leq 4$.
Solution. Let $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$. Then $\frac{\partial \rho}{\partial x}=\frac{x}{\rho}$ and $\frac{\partial}{\partial x}\left(\frac{x}{\rho}\right)=\frac{1}{\rho}-\left(\frac{x}{\rho^{2}}\right) \frac{\partial \rho}{\partial x}=\frac{1}{\rho}-\frac{x^{2}}{\rho^{3}}$. By symmetry, $\nabla \cdot \mathbf{F}=\frac{3}{\rho}-\frac{x^{2}+y^{2}+z^{2}}{\rho^{3}}=\frac{2}{\rho}$. By Divergence Theorem,

$$
\begin{aligned}
\text { Flux } & =\iiint_{D} \nabla \cdot \mathbf{F} d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{2}\left(\frac{2}{\rho}\right)\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} 3 \sin \phi d \phi d \theta=\int_{0}^{2 \pi} 6 d \theta=12 \pi
\end{aligned}
$$

17. (a) Show that the outward flux of the position vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ through a smooth closed surface S is three times the volume of the region enclosed by the surface.
(b) Let \mathbf{n} be the outward unit normal vector field on S. Show that it is not possible for \mathbf{F} to be orthogonal to \mathbf{n} at every point of S.

Solution. (a) Note that $\nabla \cdot \mathbf{F}=1+1+1=3$. By Divergence Theorem,

$$
\text { Flux }=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot \mathbf{F} d V=3 \iiint_{D} d V
$$

where $\iiint_{D} d V$ is volume of the region enclosed by the surface S.
(b) If \mathbf{F} is orthogonal to \mathbf{n} at every point of S, then $\mathbf{F} \cdot \mathbf{n}=-$ everywhere, and hence

$$
\text { Flux }=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=0
$$

But Flux $=3 \times($ volume of $D) \neq 0$, so \mathbf{F} is not orthogonal to \mathbf{n} at every point of S.

